ウレタン投与による白血球減少に及ぼす精製薬の影響について

研究生 星 野 重 二
横浜医科大学细菌学教室 （主任：矢追秀武教授）
（昭和 33 年 7 月 28 日受付）

序

既に、矢追等は精製薬（以下、PVL と略記）の実験的放射能障害による白血球減少症に対する療効を明らかにしたが、臨床的にも X 線障害者について療効が 1, 2 報告されている。

次いで、矢追等は Nitromin による白血球の減少に対しても PVL が奏功することを報告している。

一方、ウレタンが白血病に対して奏功することは既に多くの人々（10〜28）によって報告されている。

これらの 3 等によって惹起される白血球減少が、経て全く同一の機転に基づくものとは思われないが、Nitromin 及びウレタンは所謂 Radiomimetic effect があると考えられ、前述の如く放射能及び Nitromin による白血球減少に対し著明な治療効果を示した PVL が、ウレタンによる白血球減少に対しても有効であろうと予想された。然し、白血球数の減少は GADDUM(27) のいうように細胞分裂の抑制にあるとすると実験(29〜30) において、小宮(30) のいう神経性調節作用に基づく部分もあり、又、田辺(30) 等の Paramaecium を用いてのウレタンの細胞分裂抑制作用と麻酔作用との関連性も考慮すべき問題である。

そこで、以上の諸事項を考慮しながら、本実験はすべてマウスを用いて実施し、ウレタンによる白血球減少を PVL で治療せんと試みた。

第 1 実験は治療実験に適するウレタンの使用量及び使用期間等の条件を決定する目的で行ない、第 2 実験は第 1 実験によって決定されたウレタンの適量量を用いて PVL の治療効果を見るために行った。第 3 実験では第 2 実験の成績を再確認すると同時に、放射能障害に対して PVL と類似的作用を有するといわれる Adrenochrom(30,30,40) の効果を比較検討した。

第 1 実験（基礎実験）
実験動物及び方法
実験動物としては 20 g 前後のスイスマウスの雄を使用した。
ウレタンは 20% の水溶液としてマウスの大腿外側の皮下に注射した。新調ごとにマウスに対する毒性を検査し且つ無菌的なることを確かめた。その 1 回注射によって 50% 数死量は、体重 20 g 前後のマウスにおいて約 0.2 cc であった。

ウレタン溶液を注射したマウスを下記の如く各群 20 〜30 匹の 7 群に分けた。

(1) 群：0.1 cc を 7 日間連日皮下注射、
(2) 群：0.2 cc を 7 日間、
(3) 群：0.3 cc を 7 日間、
(4) 群：0.05 cc を 6 日間、
(5) 群：0.025 cc を 10 日間、
(6) 群：0.05 cc を 7 日間、以後 0.025 cc を 7 日間、
(7) 群：0.025 cc を 30 日間（日顔を除く）皮下注射。

かくしてウレタン注射開始前及び開始後 1 週間毎に各群 4〜5 匹のマウスについて（以後の実験も同様）、尾端より 2〜3 cm のところを鈍利な安全刃で切開し、血液採取、赤血球数、血色素量及び末梢血像、死亡率などについて調査した。

実驗成績
(1) 第 1 図は 0.1cc づつ連日注射群 (A)、0.2cc づつ連日注射群 (B)、0.3 cc づつ連日注射群 (C) の白血球数の消長を示す。図に示す如く、各群とも急激に白血球数の著明な減少を招来し、0.2 cc (B) 群、0.3 cc (C) 群は共に 0.025 cc (E) の 30 日間注射群（D）に次うる。
(C) 群は3日以降に一部死滅してその後の検査が出来なかった。

0.1 cc (A) 群も、(B)、(C)群程著明ではないが、1
週後には約半減し、死亡率もこの時期から急激に増加し、
12日目には死亡率 90% を示した。従って、かかる量に
おいては1カ月以内に観察を要する実験は出来ないことが
判かった。

第2図は0.05 cc を連日6日間注射した(D)群、及び
0.025 cc を10日間注射した(E)群の成績を示す。
図に示す如く、(D)群はすでに注射開始後1週間目に白
血球数の減少を示すが注射を中止すると一時的な増加を
来たすことが見られる。これに反して(E)群(0.025 cc
注射群)は初期に減少がみられず、むしろ増加の傾向が
みられるが、2週以後から漸減する傾向である。

死亡率の同図に併記せる如く、(D)群では2週以後急
激に死亡が増加し1カ月後において約 60% の死亡率を
示したが、(E)群においては25日目頃より死亡が増加
し1カ月後には約 40% 死亡した。

第3図は0.05 cc を7日間、以後0.025 cc を7日間
注射した(F)群、第4図は0.025 cc を30日間(日曜を
除く)連続注射した(G)群の成績を示す。

図に示す如く、(F)群は1週間後に著明な白血球減少
を来たしたが、ウレタン注射量を半減した7日以後急激
に増加し、注射を中止するとその増加は更に著明となっ
た。

一方、死亡率も2週後より急激に増加し20日後には
80% 死亡した。

0.025 cc 1カ月の(G)群は初期には稍増加の傾向を示
した白血球数も2週以後は減少しはじめ注射期間中は
軽度ながら減少を続けている。然し注射を中止するとこ
れも急増加を示した。死亡率は3週目頃より漸増し、1
カ月後約 50% の死亡率を示している。

(II) 末梢血液像の変化
末梢血液像の変化は第4図及び第5図(A)、(B)に示
す如くである。急激に死亡全滅した(B)、(C)両群は検
す如く、治療群の死亡例が対照群のそれよりも也好れて現われるが、1 2 月後の死亡率においては両群間に差を認めない。白血球数の増加は同図に示す加く、治療中も対照群と同様減少し、ウレタン投与を中止すると両群とも著明に増加を来たす。5，増加の度合いは治療群が著明な。この増加の構成因子は両群共，好中球の増加に基づくことが第 7 図（B）に示されている。

赤血球数、血色素量の変化は白血球数の如く直結的でなく且つ著しくないが、30 日後には対照群は治療群に比して赤血球、血色素の減少度が著明であった。第 7 図（C）はこれらの関係を示している。

（II）20% ウレタン溶液 0.05 cc 7 日間，以後 0.025 cc 7 日間，PVL 0.3 cc 14 日間注射した（B）群の成績は同図に示す通りで，死亡率は 2 週以後，著明に増加し数日中に両群共に約 80% 死亡に至る。即ち，死亡率では両群間に差を認めない。

又，白血球数は両群とも 1 週後に著明な減少を来たすが，ウレタンを半減すると徐々に増加し，中止すると著明な増加を招来して，3 週目には実験前値より増加した。治療群の減数が対照群の夫れよりも著しく減少するかであるが，2 週以後の消長には両群間に差は見られない。

赤血球数，血色素量の消長は第 8 図（B）に示した如くで，赤血球数は両群共，1 2 月の減少を来たしたが，血色素量には影響が見られなかった。これらの傾向についても両群間に差はなかった。

（III）20% ウレタン溶液 0.025 cc，PVL 0.3 cc 各々 30 日間注射した（C）群の成績は第 9 図に示す通りである。死亡率の比較では 3 週以後，対照群の死亡が治療群より著明に高かったが，6 週後においては両群共約 50% で差を見出せない。

白血球数は両群共 1 2 週では投与前と著しく変動しないが，特に治療群に著しかった。2 週以後 4 週まで対照群は著しい減少を続け，投与後より著明な減少を示した。これに反して治療群においては減少の傾向は全然見られず，むしろ増加の傾向がある。又，対照群では投与を中止すると再び増加を来たすが，治療群ではかえって傾向は少ない。特に 4 週以後における両群の差は著明である。これを白血球の増減を観ると両群共，2 週までの増加が主に好中球によるものであることが判明（但し治療群の淋球には 1 週目より増加している）（第 10 図参照）。

淋球の動きは，治療群の初期に増加を示した他は，絶対数において著明な変動なく著明減少する。特に目につく点は，治療群の好中球数の著明な増加である。即ち，治療群の高化維持に好中球の主役を演じていることが判明。
第11図は赤血球数及び血色素量の変化を示したもので、3週後稍減少を示した以外著変なく、両群における差も見られない。

小括

以上3群の実験成績からPVLの治療効果を観るに、(A)群及び(B)群の成績で明らかに、比較的大量のウレタン投与、または急性中毒状態においてはPVLは白血球数維持に大した影響を与えることが出来ず、治療中と雖も対照群と同様、白血球数の減少を来たす。然るに(C)群の成績の如く、ウレタンの少量長期投与の場合には相当の影響を与える。そして少量授与時における滞血球数の変動が少ないこと、増加の主役が好中球であることが判った。然し前実験において指摘した如く、好中球の増加は必ずしも治療的効果（死亡率の減少）を意味していない。即ち、死亡が好中球増加の時期と一致する点がある。PVLによってもたらされた白血球数の増加ないし維持が真的治療効果と言う得るか否かは本実験だけでは明らかに出来なかった。

猶、X線照射時及びP₃₂体内照射障害時、或はNitromin障害時の各種白血球の変動との相違については考按の所で論ずることにする。

第3実験（PVLとAdrenochromの比較実験）

第2実験において比較的少量のウレタン連続投与によって招来する白血球減少に、PVLが有効に作用することを認めたので、更に同様の実験を繰返して実験結果の偶然でないことを確かめると同時にPVLと一部類似の治療効果を持つと云われているAdrenochrom（Ac-17）と比較した。

実験材料及び方法

実験動物としてはDD系雄マウス、体重20g前後のものを使用した。

ウレタン溶液は実験を通じ第1実験記載の注意を守って作製使用した。

供試Adrenochrom（Ac-17）は田辺製薬の製品（アドナント製用）である。その0.2cc（1.0mg）を連日皮下に30日間（日線を除く）注射した。

PVLは前実験と同様に処理し0.3ccを30日間皮下注射した。

マウスを各群30匹宛の3群に分ち、対照群は20％ウレタン溶液0.025ccと生食水0.2ccを、PVL群はウレタン上記とPVL0.3ccを夫々30日間皮下注射した。

Ac-17群はウレタン上記とAc-170.2ccを30日間皮下注射した。

検査項目としては前実験において記載した如く、赤血
実験成績

（I）白血球数の消長の比較

成績は第12図に示す如く、対照群及びAc-17群は8日目に既に減少の傾向を示し、16日目頃に最低値に達し、以後その低い値を維持、注射完了に及んで上昇を来たした。然るにPVL群では減少の傾向なく、むしろ頚加増加気味に経過し注射完了後もさした変化を示さなかった。

本実験における対照群及びPVL群の成績を第2実験の（C）群の成績と比較するに、本実験においては対照群が約1週後に減少しているのに対して反して先の第2実験時には頚加増加の傾向が見えた。これは本実験ではDD系マウスを使用し、第2実験ではスイス・マウスを使用している違いを是正するか否か、家兎を用いた他の人々の実験にももらられた如く、或る場合には初期に増加し、ある場合には減少することがあると言う成績と似ている。しかし、PVL群では大体両実験とも同様に経過している（第9図参照）。全体的に観察すれば、第2実験の成績と第3実験の著明で他の2者の変動が著明でない時期に増加し、之が白血球数の増加の原因となっていることがよく判る。淋巴球の方は3者共、減少を続けるが、途中対照群及びAC-17群に増加の山が見られ、之が白血球数の増加の山と一致している（PVL群との時期の検査は行なかった）。この時期に対照群、AC-17群共好中球の著明な山を描かないのは興味深い。又、この変化がたった1度ウレタン投与を中止するために招致されたと考えたことも重要な意味がある。この点については考按のところを触れることにする。

（III）好酸球の動揺について

第14図は好酸球実数の変動を比較したものである。図に示す如く、PVL群において経過に従って徐々に増加するに反して対照群、AC-17群のそれは途中小さな山を描きながら軽く経過し、ウレタンの投与中止と共に急増に增加している。この動きには恢復期の変動、アレルギー性の変化及び副腎機能との関係等が考えられるが、本実験だけでは何とも云えなかった。

第3实验においてはDD系マウスを使用したためか、対照群の白血球数が初期減少を示した外は、第2実験群の成績に略々同様で、特にPVL治療群の成績は非常に似た経過を示した。即ち、PVL治療による白血球数の減少抑制効果が再現され、第2実験の成績を再確認することが出来た。

他方、PVLと同様に放射能障害時の白血球減少症に治癒的効果が有るとされたAdrenochromはウレタンによる白血球減少には全然効果がないことが判った。ここにおいて、血管透過性の低下、血管拡張性の上昇、抗アレルギー作用、放射能障害時の白血球減少症の治療等に共通的な効果をあつてもPVLとAdrenochromとは本質的に異なるものがあることを知った。又、淋巴球の動きは3者共略々同様に、減少気味に経過したのに反して中球の動きはPVL治療群に特有で、他の2群よりも遥かに増加している。これは前実験成績とはなはだ似た經過を示している。

特に注目すべき所見は、第12図に示した第24日の対照群とAC-17群における白血球数の突然の増加である。これは事故により前日のウレタン注射が出来なかったことに因るものと推察されるが、相当な変化を示した。この事実から、本実験に用いた鼠類のウレタンの白血球減少効果は約24時間（実際にももっと短いかと思われるが）しか持続しないことを疑ったのである。これは比較的少量のウレタンによる白血球減少機転が、神経性、或は体液性の調節変化に基づくのではないかとの疑いを抱かせると同時にPVL治療の作用機転を考察するにあたり着目される事柄である。
考察

さて、3つの実験成績を通じて先ず考えなければならないことは、レンドリンによってもたらされる末梢血中の白血球数の機転である。序において述べた如く、当然radiomimetic effectを考えられるが、他方、血液の神経性調節、或は酸酵作用との関連性を無視することは出来ない。従って、本報告の第2、第3実験で使用した如き量のレンドリンにおいては細胞分裂抑制効果も考えられが、その前過程として神経性或は体液性（ホルモン性）抑制が問題になるのではないかと思われる。第3実験において差異された。たとえ1日の投与中止によっても翌日には恢復的態度が認められた事実は、細胞的は組織的に抑制変化がおこったものである。30日中の1日はあまり問題にならないのではないかと考える。即ち、1回のレンドリン投与効果は約24時間しか持続しない如くである。

次に注意しなければならない点は、第1及び第2実験において観察した如く、比較的大量のレンドリンを投与すると白血球数は減少するが、投与を中止すると急激にその数を増し、同時に死亡数も激増することである。従って、この白血球数の主役を演ずる好中球の増加が必ずしも目的に合致した恢復を意味しないことである。むしろ淋巴球の数歯死亡数と密切に関係する如く見える。即ち、第1実験第4回、第5図（A）、第2実験第7図（B）、第10回に示した如く、その数が3,000を割る如き状態は数日中に死亡が増加する際のようであら

この所見はX線障害時にも見られることとは既に矢道等8）、9）が確認している。

然し今回の実験だけでは淋巴球数の恢復が真に目的に合致した恢復を意味するものであるか否かは判らなかった。

即ち、好中球数と淋巴球数との比がマウスにおいてはヒトのそれと丁度反対の関係にある。これは比較組織学的（血液学的）的意義及び血液機能分化上問題を提供するものであろうが、兎に角マウスにおいて淋巴球の多いことは、この細胞がマウスにとつて、それだけ重要な機能的意義を有しているものと解釈しなければならず、ヒトに於ての淋巴球、好中球の概念をそのままマウスに当てはめることは不当と言わざるを得ない。

次にレンドリン投与で招来する白血球の減少が主に淋巴球の減少によるものであることは他の人々も既に認めているところであるが、3実験を通じて示されたところも全く同様の成績であった。

挙げ、PVLの治療効果について考察に際して上述の諸点を考慮しなければならないが、レンドリンによって招来される、末梢血の白血球減少のいかなる過程にPVLが作用するかが問題になる。第2及び第3実験に示した如く、淋巴球には著しい影響のないことは明らかであるが、好中球の増加が白血球数減少阻止の最大原因となっていることを思うと、友幸等の Pacatal N-Methylpiperidyl-（3）-Methylphenothiazine（トランキライザーの1種）を用いての家児実験は興味深き且つ示唆に富む。即ち、Pacatal注射家児には、ラズ・タックチンを注射しても白血球増多が起きないが、この場合にも Cortisone, ACTHの前処置によって増多を惹起される証明を得る。そして彼等はこの所見を Pacatalによる白血球調節神経の麻痺により、神経系統、神経体液路、純粋な体液性路の全面遮断によって肝における Neutropoeti の生成が円滑に行われていない時に
Cortisone, ACTH の投与が副腎皮質機能を完全に阻害することにより Neutropoetin 生成を促進し、体液性系を恢復するためであると解釈している。一方、矢追等の研究によって示された如く、PVL は Cortisone とは本質的に異なる作用を有するが、類似した作用もしくは、時に異種蛋白として（56℃、15 分間加熱してある）Neutropoetin 的作用因子となる可能性が考えられる。

いずれにもせよ、PVL がウレタンによって招来される末梢血液白血球の減少に対して阻止的、作用することは事実である。これに反して、放射線障害時に PVL と類似の作用を持つとされる Adrenochrom は木村の追試により否定されたが、ウレタン投与による白血球減少に対しても何等の作用を有しないことを証明した。ここにおいても PVL と Adrenochrom の間に類似作用はあっても本質的な相違のあることが判かった。

最後に、X 線障害時、P32 による内部照射障害時に、Netromin 及びウレタンによる白血球数、淋巴球、好中球の消長及び PVL のそれらの恢復に及ぼす影響の点について述べる。

X 線障害及び P32, Nitromin による障害は障害期間も短かく、前節ウレタンの大量を短期投与したものの同様の反応が、白血球数、淋巴球、好中球数に見られる。所謂 radiometric effect によるもので、程度の差はあっても初期の白血球減少は主に淋巴球の減少に基づき、従って好中球は相対的に增加の傾向を示している。そして前3者の PVL 治療に際して、白血球減少は勿論、淋巴球数も対照例に相当度やや恢復しているが、特に X 線障害時は好中球の増加が淋巴球の増加より著明のようである。このことは前著48) らによって人間治療時にも認められている。一方向、ウレタンの比較的小量の長期投与時の PVL 治療については第2及び第3実験に示した如く、淋巴球の恢復が遅れ、好中球の増加が著明であった。これら諸実験の相違は各種の原因が考えられようが、主として障害作用の相違、障害期間の長短等によるものであろう。

結論

1. ウレタン投与中マウスの末梢血液白血球数は初期増加を来たすこともあが、結局減少する。
2. ウレタン投与中の白血球数減少は主として淋巴球数の減少に基づく。
3. PVL の皮下注射はウレタン投与による末梢血液白血球数減少に阻止的、作用する。
4. PVL はウレタン投与中の淋巴球数の減少阻止にはあまり効果がないが、白血球增加に作用し、主として好中球の増加を来たす。即ち、好中球の増加が白血球数減少阻止の主役を演じている。
5. Adrenochrom はウレタン投与中に招来される末梢血液白血球数の減少を阻止することは出来ない。
1957.
40) 田多井, 他: 日新医学, 44 : 8, 441, 1957.
41) 北根誠一郎, 他: 日新医学, 44 : 12, 665, 1957.
44) 北根, 他: 臨牀内科小児科, 12 : 12, 87～89, 1957.