実験的クリプトコックス症に対する副腎皮質ホルモンの影響
特にその生体内菌分布に及ぼす影響について

佐々隆之
東京大学医学部上田内科（主任：上田英雄教授）
（昭和34年5月27日受付）

緒 言
クリプトコックス症は Cryptococcus neoformans の感染によって惹起される人及び動物の真菌症である。
BUSSE 及び BUSCHKE（1894～1896）により初めて報告されて以来、極めて稀な疾患とされていたが、近年真菌症に対する関心が急激に上昇し、更には抗生物質の広範な使用、あるいは副腎皮質ホルモンの普及と相まって、その報告例は多い趨勢を示している。EMONS によれば、1952 年迄にすでに 211 例以上の報告が存在し、また LITTMA によれば 1955 年にはその症例数は 30 例を超えたといわれるが、本邦においては、渡辺（1952）及び三木（1961）の報告に初め、今日迄に未発表のものを含め総数 30 例（5）を数え、近年増加の傾向にある。
一方 1950 年にコーチソンがリウマチ性疾患の治療に応用されてから、合併する感染症あるいは結核症の増悪させるとの報告が相次ぎ、以来コーチソン系ホルモンの使用は感染症に対して禁忌ともされてきた。併し感染症に対する生体内の示す防禦反応には、特異的部位と非特異的部位とがあり、前者を化学療法によって抑制するのを併行して、後者が特に生体内ととして不利であるならば、これをコーチソン系ホルモンにより積極的に緩和させる事が有効と考えられ、最近ではこれを肯定する数多くの報告（6）が数えられる。即ち今日では、コーチソン系ホルモンは抗生物質併用の下に、適応を選んで使用すれば、感染症治療の強力な補助手段ともなり得るという事が出来よう。

真菌性に対するコーチソン系ホルモンの影響については、臨床例においても動物実験においても否定的なものが少なく、様々の報告の大半はカンジダ症に関することに、クリプトコックス症に関する報告は極めて少ないようである。著者は実験的クリプトコックス症に対する副腎皮質ホルモンの影響を主として生体内における菌分布の観察により検討したので、以下その成績を述べる。

実験方法及実験成績
I．実験的クリプトコックス症における

| 腸器内菌数の消長

<table>
<thead>
<tr>
<th>腸器</th>
<th>接種後 3日</th>
<th>6日</th>
<th>9日</th>
<th>12日</th>
<th>15日</th>
<th>18日</th>
<th>21日</th>
<th>25日</th>
<th>27日</th>
</tr>
</thead>
<tbody>
<tr>
<td>脳</td>
<td>102</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>肺</td>
<td>542</td>
<td>23,780</td>
<td>4,693</td>
<td>無数</td>
<td>無数</td>
<td>無数</td>
<td>無数</td>
<td>無数</td>
<td>無数</td>
</tr>
<tr>
<td>肝</td>
<td>208</td>
<td>180</td>
<td>1,471</td>
<td>129</td>
<td>767</td>
<td>1,388</td>
<td>397</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>腎</td>
<td>344</td>
<td>711</td>
<td>3,351</td>
<td>1,197</td>
<td>736</td>
<td>3,990</td>
<td>2,250</td>
<td>2,476</td>
<td>298</td>
</tr>
<tr>
<td>脾</td>
<td>112</td>
<td>18</td>
<td>1,032</td>
<td>698</td>
<td>209</td>
<td>6,112</td>
<td>2,103</td>
<td>2,153</td>
<td>259</td>
</tr>
</tbody>
</table>

| 数字は腸器 1/30g 当りから培養された菌数

| 腸器別菌数の消長

<table>
<thead>
<tr>
<th>接種後日数</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5000</td>
</tr>
<tr>
<td>6</td>
<td>8800</td>
</tr>
<tr>
<td>12</td>
<td>2120</td>
</tr>
<tr>
<td>15</td>
<td>1280</td>
</tr>
<tr>
<td>18</td>
<td>1280</td>
</tr>
<tr>
<td>21</td>
<td>2120</td>
</tr>
<tr>
<td>25</td>
<td>5000</td>
</tr>
<tr>
<td>27</td>
<td>2120</td>
</tr>
</tbody>
</table>

図 | 腸器別菌数の消長

実験のクリプトコックス症に対する副腎皮質ホルモンの影響
特にその生体内菌分布に及ぼす影響について

実験方法及実験成績
I．実験的クリプトコックス症における

<table>
<thead>
<tr>
<th>腸器</th>
<th>接種後 3日</th>
<th>6日</th>
<th>9日</th>
<th>12日</th>
<th>15日</th>
<th>18日</th>
<th>21日</th>
<th>25日</th>
<th>27日</th>
</tr>
</thead>
<tbody>
<tr>
<td>脳</td>
<td>102</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>肺</td>
<td>542</td>
<td>23,780</td>
<td>4,693</td>
<td>無数</td>
<td>無数</td>
<td>無数</td>
<td>無数</td>
<td>無数</td>
<td>無数</td>
</tr>
<tr>
<td>肝</td>
<td>208</td>
<td>180</td>
<td>1,471</td>
<td>129</td>
<td>767</td>
<td>1,388</td>
<td>397</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>腎</td>
<td>344</td>
<td>711</td>
<td>3,351</td>
<td>1,197</td>
<td>736</td>
<td>3,990</td>
<td>2,250</td>
<td>2,476</td>
<td>298</td>
</tr>
<tr>
<td>脾</td>
<td>112</td>
<td>18</td>
<td>1,032</td>
<td>698</td>
<td>209</td>
<td>6,112</td>
<td>2,103</td>
<td>2,153</td>
<td>259</td>
</tr>
</tbody>
</table>

| 数字は腸器 1/30g 当りから培養された菌数

| 腸器別菌数の消長

<table>
<thead>
<tr>
<th>接種後日数</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5000</td>
</tr>
<tr>
<td>6</td>
<td>8800</td>
</tr>
<tr>
<td>12</td>
<td>2120</td>
</tr>
<tr>
<td>15</td>
<td>1280</td>
</tr>
<tr>
<td>18</td>
<td>1280</td>
</tr>
<tr>
<td>21</td>
<td>2120</td>
</tr>
<tr>
<td>25</td>
<td>5000</td>
</tr>
<tr>
<td>27</td>
<td>2120</td>
</tr>
</tbody>
</table>
え、37℃ 3 日間平板培養した。培地上の集落はその数が大なる時は熙谷式集落計算盤にて算定し、菌株 1/30g 当りに換算した（以下菌肉内菌数の測定はすべてこの方法による）。

実験成績

各経路の培養によって得られた集落数の推移は第 1 表に示され、これを図示すると第 1 図の如くなる（第 1 表、第 1 図）。図は横軸に菌株種後の日数をとり、縦軸には得られた菌数を 4 を底数とする対数によって表わした。

即ち、接種された真菌は先ず肺に急速に増え、脳の菌数はこれにおくれて増加するが、菌株種後 12 日目後に肺、脳の菌数が大略同数となり、以後脳の菌数の方が大となり、脳、肺の順に菌柱無数に増加する。これに対し、肝・腎・脾の菌数は概ね平行し、終始高い値を示さなかった。

II. 実験的クリプトコックス症に対する副作用皮質ホルモンの影響

実験方法

接種菌株は Cryptococcus neoformans DUKE 株を用い、その菌体 62 万 5 千を 0.25cc 生理的食塩水溶液とし、マウス尾静脈より接種した。

副作用皮質ホルモンとしては米国 Schering 社製プロドニン注射用懸濁液を用い、これを注射用蒸溜水にて 10 mg/cc の濃度に稀釈し、その 0.2cc、即ち 2mg/マウスを菌株種後 7 日目に皮下注射した。実験動物のマウスは 14～16g の dd 系を使用し、各群に次の如き処置を施した。

A 群： マウス 20 匹
i) Cryptococcus neoformans 62.5 万接種
ii) プレドニン 2mg を菌株種後 7 日目に投与
K2 群： マウス 20 匹

表 2

<table>
<thead>
<tr>
<th>接種後 4 日</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 群</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>19</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>17</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>K2 群</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>19</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>17</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

数字はマウスの生存数

i) Cryptococcus neoformans 62.5 万接種

K2 群： マウス 10 匹

i) プレドニン 2mg を A 群と同じ日に投与
尚菌数の計算を、K2 群と全く同様に処置したマウス 20 匹を別に用意した。

菌株数計算はプレドニン投与群では生存せるマウスにつき死亡後直ちに、コントロール群では菌株数計算として別に同様に処置された生存せるマウス各 4 匹につき脳・肺・肝各器から行なった。

実験成績

1) マウスの生存率に及ぼす影響

この成績は表 2、図 2 に示される。図は横軸に菌株種後日数を、縦軸にはマウス生存率を百分率で表した。

即ち 21 日間の観察により、プレドニン投与群ではその生存率が 5% に近値低下したに対し、菌のみ接種したコントロール群では 60% の生存率を示し、明らかに有意の差を認めた。尚プレドニンのみ投与したコントロール群の生存率は 100% を示した。

2) 生体内菌分布に及ぼす影響

肝・肺・腎・脾各器内菌数の消長は表 3、図 3、4 に示される（第 3 表、第 3 図、第 4 図）。図 3 はプレドニン投与群の、図 4 はコントロール群のそれぞれ各経路内菌数の推移を示している。尚図は横に菌株種後日数を、縦軸には得られた菌数の値を 4 を底数とする対数で表した。

図によって明らかの如く、コントロール群においては、菌は肺、肝の順に増えて無数に増加するが、プレドニン投与群においては、肺、肝、脳を同時に、コン

表 3

<table>
<thead>
<tr>
<th>部位</th>
<th>接種後 4 日</th>
<th>7 日</th>
<th>10 日</th>
<th>12 日</th>
<th>13 日</th>
<th>14 日</th>
<th>15 日</th>
<th>16 日</th>
<th>17 日</th>
</tr>
</thead>
<tbody>
<tr>
<td>コントロール群</td>
<td>脳</td>
<td>423</td>
<td>7,250</td>
<td>18,970</td>
<td>15,970</td>
<td>10,970</td>
<td>10,970</td>
<td>10,970</td>
<td>10,970</td>
</tr>
<tr>
<td></td>
<td>肺</td>
<td>12,900</td>
<td>11,000</td>
<td>10,000</td>
<td>9,000</td>
<td>8,000</td>
<td>8,000</td>
<td>8,000</td>
<td>8,000</td>
</tr>
<tr>
<td></td>
<td>肝</td>
<td>866</td>
<td>1,201</td>
<td>475</td>
<td>475</td>
<td>475</td>
<td>475</td>
<td>475</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>腸</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>プレドニン投与群</td>
<td>脳</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>肺</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>肝</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

数字は臓器 1/50g 当りから培養された集落数
トロール群より早く薬が無数となる。ここに特に注目すべきは、肝の菌数の受ける影響が顕著な事で、コントロール群では最終高値を示さなかったのに対し、プレドニゾン投与群では肺と同時に早期に無数に増加している。

3) 病理組織学的所見に及ぼす影響

マウス各臓器の Cryptococcus neoformans による感染創は一般に乏しく、只脳髄膜炎を起し易くなり、脳の弾力が低下し、激化を示すのを認めた程度である。

染色法としては Haematoxylin-Eosin 染色及び Periodic acid Schiff 染色を行なたが、菌体染色には後者が最も良いと思われる。

肺の変化は大・中・小種々の大きさの巣形成が著明であり、その中に多数の菌体を認めた。巣形成の著明なものは、浮腫以外の部は菌腫で一杯で、呼吸面の殆ど認められぬものもあった。その他には局所性出血、浮腫を多くの例に認めた。又細胞反応は認めないが、又若も極く軽度の主としてリンバ球による浸潤を認めるのみであった。

脳における変化も主として巣形成の形であり、その中に菌体多数を認めた。又脳ではかなり巨大な巣を形成するもののあった。

肝における主な変化は巣形成と壊死巣であり、巣形成の中には菌体を、壊死巣の周囲には軽度の死細胞浸潤を認めた。

プレドニゾン投与しないコントロール群の組織像も概ね同様の変化を認め、只巣形成、巣内の菌体数等において、その程度が他群よりもプレドニゾン投与群に比し軽度であったが、菌体の消長を見る見られる様子はっきりした相違は認められなかった。

III. クラフォテリシンによる実験的クリプトコッカス症の感染症実験に及ぼす副作用

薬物ホルモンの影響

アンフォテリシン B は Streptomyces の 1 種から
表4 各薬剤のクリプトコックス最低発育阻止濃度

<table>
<thead>
<tr>
<th>薬剤名</th>
<th>最低発育阻止濃度（mg/cc）</th>
</tr>
</thead>
<tbody>
<tr>
<td>マーゾニン</td>
<td>0.12mcg</td>
</tr>
<tr>
<td>ゲンチアナ素</td>
<td>3.2mcg</td>
</tr>
<tr>
<td>ポリミシンB</td>
<td>12.0mcg</td>
</tr>
<tr>
<td>トリコマイシン</td>
<td>0.31u</td>
</tr>
<tr>
<td>アンフォテリシンB</td>
<td>1.2u</td>
</tr>
<tr>
<td>ニスタチン</td>
<td>8.0u</td>
</tr>
<tr>
<td>アクティブオニン</td>
<td>0.12mcg</td>
</tr>
</tbody>
</table>

アンフォテリシンBは、新旧の抗かび抗生剤であり、クリプトコックスの感染を防ぎ実験に用いた。

実験方法
実験動物は、14～17gの系dd系マウスを用い、1群は20匹とした。

接種薬剤はCryptococcus neoformans田版株とし、500万/0.25ccの菌体生理的食塩水溶液を尾静脈より接種した。

アンフォテリシンBは原剤を注射用蒸溜水にて1mg/cc、2mg/cc、4mg/ccの濃度にて懸濁し、その0.25cc、即ち0.25mg/cc、0.5mg/cc、1mg/ccの3段階をそれぞれ異なるマウス群に、各群菌種菌の発育を14日間毎に、腹腔内に接種した。尚アンフォテリシンB懸濁液は、毎日接種前に新しく調整したものを用いた。

実験成績
各群マウスの生存数は表5に示され、図の横軸には薬接種後日数を、縦軸にはマウスの生存率を百分率で表した。

これより明らかに、薬の接種したマウス群の生存率は急速に低下し、12日目日に全マウスが死亡したのに対し、アンフォテリシンBによる治療群はかなり高い生存率を示した。又実験効果は、この実験では、1mg/cc及び0.25mg/cc投与群が、0.5mg/cc投与群よりもやや優れているようであった。

3）感染防制実験に及ぼす副腎皮質ホルモンの影響
実験方法

接種薬剤はCryptococcus neoformans田版株を使用し、その125万/0.25cc生理的食塩水溶液をマウス尾静脈より接種した。

副腎皮質ホルモンはプレドニゾン注射用懸濁液を用い、1.25mg/ccの濃度にて注射用蒸溜水にて稀釈したもの、その0.2cc、即ち0.25mg/ccを薬接種後24時間、48時間の2回に亘り皮下注射した。アンフォテリシンBは原剤を1mg/ccの濃度にて注射用蒸溜水にて懸濁し、その0.25cc、即ち0.25mg/ccを薬接種翌日毎日腹腔内に接種した。尚アンフォテリシンB懸濁液は、毎日接種前に新しく調整したものを用いた。

実験動物のマウスは15～18gの系dd系マウスを使用し、各群の接種処置を施した。

A群：i) 薬125万接種
ii) プレドニゾン0.25mgを薬接種後24時間及び48時間に2回投与

B群：i) ロンフォテリシンB0.25mg/日毎日投与
ii) アンフォテリシンB0.25mg/日毎日投与

C群：i) 薬125万接種
ii) プレドニゾン0.25mgを薬接種後24時間及び48時間に2回投与

K1群：i) 薬125万接種

K2群：i) プレドニゾン0.25mgをA、C群と同時に2回投与

K3群：i) プレドニゾン0.25mgをA、C群と同時に2回投与

以上各群の中、A、B、C、K1の各群
表 6

<table>
<thead>
<tr>
<th>マウス群</th>
<th>治療後日数</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1群</td>
<td>30</td>
</tr>
<tr>
<td>B群</td>
<td>10</td>
</tr>
<tr>
<td>C群</td>
<td>40</td>
</tr>
<tr>
<td>K2群</td>
<td>10</td>
</tr>
<tr>
<td>K3群</td>
<td>10</td>
</tr>
</tbody>
</table>

表 7

<table>
<thead>
<tr>
<th>関数</th>
<th>マウス群</th>
<th>接種後</th>
<th>6日</th>
<th>9日</th>
<th>12日</th>
<th>16日</th>
</tr>
</thead>
<tbody>
<tr>
<td>腸</td>
<td>A群</td>
<td>3,700</td>
<td>26,000</td>
<td>21,000</td>
<td>640</td>
<td>12,000</td>
</tr>
<tr>
<td></td>
<td>B群</td>
<td>1,900</td>
<td>11,000</td>
<td>6,500</td>
<td>610</td>
<td>8,000</td>
</tr>
<tr>
<td></td>
<td>C群</td>
<td>180</td>
<td>95,000</td>
<td>無数</td>
<td>無数</td>
<td>無数</td>
</tr>
<tr>
<td></td>
<td>K1群</td>
<td>2,000</td>
<td>7,500</td>
<td>7,000</td>
<td>1,500</td>
<td>6,300</td>
</tr>
<tr>
<td></td>
<td>K2群</td>
<td>340</td>
<td>3,800</td>
<td>800</td>
<td>700</td>
<td>5,530</td>
</tr>
<tr>
<td></td>
<td>K3群</td>
<td>34,800</td>
<td>86,000</td>
<td>無数</td>
<td>無数</td>
<td>無数</td>
</tr>
<tr>
<td></td>
<td>K4群</td>
<td>34,000</td>
<td>32,000</td>
<td>9,500</td>
<td>4,000</td>
<td>4,000</td>
</tr>
<tr>
<td></td>
<td>K5群</td>
<td>12,300</td>
<td>18,000</td>
<td>無数</td>
<td>無数</td>
<td>無数</td>
</tr>
</tbody>
</table>

2) 腸器内菌数の消長に及ぼす影響

この成績は表 7、図 7・8・9の通りである。図はすべて縦軸に菌接種後日数をとり、軸軸には得られた菌数を 4 を底数とする対数で表した。又図 7 は脇、図 8 は肺、図 9 は肝における成績である。

脇・肺・肝共に C 群（腸＋プレドニゾロン）及び K1 群（腸のみ接種）において、腸器内菌数の急速な増加を認め、接種後 10 日以内に何れも無数に増加した。これに対し治療群 B では、各関数群の菌数は一定以上には増えない。又治療とプレドニゾロンの併用群 A は B 群と概ね平行する腸器内菌数の消長を示し、生存率曲線にみられた結果と一致した。

又アンフォプラリン B による治療は、A、B 両群において、各関数群の増殖を抑制するが、各問群の薬剤を数え、これを除転せしめる程の効果を認める事は出来なかった。

尚この実験において、腸、腸、肝各関数において、

数字は腸器 1/30g 当りから培養された菌数

図 7 腸器内菌数の消長に及ぼす治療とプレドニゾロンの影響

K（腸のみ）
K1群（菌のみ接種）とC群（菌+プレドニゾロン）との間に、経過内数の消長に関しては、何れも有意の差を認め得なかった。

考案

クリプトコックス症の発症に関しては、古くは生体に抵抗する本菌がより既に抗生物質の出現、更に続いて脳内皮質ホルモンの普及及び期を同じじして増えて来た事は事実であり、その理由の大部分が、真菌症に対する軟骨の急激な外とにより、多くの例症が正確に診断されるようになって事に脱されたかも知れないが、副腎皮質ホルモン使用の影響も又その原因の1つとして否定し得ないのである。

真菌症と副腎皮質ホルモンとの関係については、最近その報告もかなり多くなされているが、その大部分はCandidaによる動物実験の否定的なものである。

併しScherra 60~62)はマウスにおける実験的カンジダ症で、コーチゾンは軽微感に対してはこれを増強せしめるが、中等症には影響なく、重症感染に対してはとしろそれを緩和すると報じ、又カンジダ敗血症をトリコマイシンと抗炎症性ホルモンの併用により治療せしめたという大久保の報告63)等、好影響をみたとするものも少なから。

クリプトコックス症に対する副腎皮質ホルモンの影響に関しては、その報告は極めて少ないので、Littmanはコーチゾンの大量投与では悪影響がある64)といい、又副腎皮質ホルモンの使用により、潜伏性感染が顕性となった臨床例65)の報告もある。

著者等はマウスにおける実験的クリプトコックス症に対する副腎皮質ホルモンの影響、更にはアンフォテリンBによる感染症状実験に及ぼすそのホルモンの影響を、主として生体内数分布の面より検討し、その機序を解明せんとした。

マウスにCryptococcus neoformans DUKE株500万接種した場合の肺、肝、脾の各薬物代の菌数の推移では、先ず肺において菌数の急速な増加が観察されているが、これは接種方法を静脈注射とした関係上当然の事と思われる。これに対し肺内の中菌数は肺において増加著し、接種後12日目に両者の菌数が大略同数となり、以後肺の菌数の方が大となり、肺、脾の順に無数に増加している。クリプトコックス症の臨床例の報告をみると、初感染の肺の病変は限局性の比較的良性の経過をとる事もあるが、多数症において結局は中枢神経系の感染を惹起し、これが直接の死因となっている。疾く如く、Cryptococcus neoformansが中枢神経系に対し親和性を有する事は著者の認める所であり、著者のマウスによる動物実験でも、同様な結果が得られた事は興味深い。

尚肝、脾、腎の中菌数は概ね平行し、絶対高い値を示さなかったので、以後の実験においては肝のみを取り上げ、後の2者の菌数計算は省略することとした。

実験的クリプトコックス症の副腎皮質ホルモンの使用により、その生存率の著明な低下をみる事は著者の実験で明らかであり、その機序を追究するため、マウス各臓器からの菌の定量培養を併行したのである。Cryptococcus neoformans DUKE株62.5万万接種後7日目にプレドニゾロン2mgを皮下投与すると、肺、肝の菌数は菌のみ接種したコントロール群のそれより早く無数に増加し、更にコントロール群では終盤高い値を示さなかった肝の菌数も、肺、脾ともに無数に増加して行くという事実は、副腎皮質ホルモンが生体内的菌の全身播種を促進するためと解釈する事が出来よう。この事実は、元来呼吸し難しい皮膚接種が困難に思わわれるCandida
の抗炎症作用によって、病巣の滲出機転・線維化作用を抑制し、薬剤の効果と相乗してよりよい治療効果が期待される。（簡）

結論
マウスにおける実験的クリプトコックス症に対する副腎皮質ホルモンの影響を、主として生体内菌分布の面より観察し、次の結果を得た。
1) Cryptococcus neoformans はマウスにおける実験的クリプトコックス症においても、臨床例と同様、中枢神経系に対し親和性を有する。
2) マウスにおける実験的クリプトコックス症において、副腎皮質ホルモンはマウスの生存率を著明に低下させ、これは本ホルモンが生体内真菌の全身播種を促進するためである。
3) アンフォテリシン B は、実験的クリプトコックス症に対して、著明な感染防御効果を有するが、これはアンフォテリシン B が生体内に於いても真菌の増殖を阻止するためである。併し治療群マウスの各器官中の菌数数も著しく高くなり、菌播種を絶対抑制する程の効果はない。
4) 実験的クリプトコックス症におけるアンフォテリシン B の生体内抗菌作用を、副腎皮質ホルモンは相殺しない。従って本症の治療には、強力な化学療法を行うと共に本ホルモンの併用を行なえば、その抗炎症作用によって、よりよい治療効果を期待する。

著者が前出に記載した、K. K. と al. の報告（1952）に従って、上田教授の御指導並びに御核閲、美甘前教授、上田内科 福島講師の御指導を厚く感謝申し上げる。

文 献
2) LITTMAN, M. L. & ZIMMERMAN, L. E.: Cryptococcosis, 3, 1956
3) 佐藤明俊: 日本医学会誌会, 33: 690, 1941
4) 小野川英, 松本種男: 小児科学, 10: 410, 1944
5) 小川英彦, 松本種男: 小児科学, 10: 410, 1944
6) 佐藤明俊, 上田内科: 日本医学会誌, 33: 690, 1941
7) 長谷川正義, 上田内科: 小児科学, 10: 410, 1944
8) 佐藤明俊, 上田内科: 小児科学, 10: 410, 1944
9) 小川英彦, 松本種男: 小児科学, 10: 410, 1944
10) 佐藤明俊, 上田内科: 小児科学, 10: 410, 1944
11) 北本吉一：日伝会誌，30：360，1956
12) 塩内直，他：日本内科学会通信，4：4，1955
13) 土岐秀治，他：日本内科学会雑誌，45：1105，1955
14) 加々米光男：臨床の日本，3：311，1956
15) 茂木光雄；近藤芳朗：小児科診療，20：931，1957
16) 金子二郎，他：最新医学，12：1779，1957
17) 五朗倉田：東京医事新誌，71：556，1954
18) 坂本義彦，他：日本病理学会会誌，45：354，1956
19) 村上修男：岡山医学会雑誌，65：624，1953
20) 脇野政市，藤本哲雄：日本内科学会雑誌，40：618，1951
21) 川村清高，横口俊一：鹿児島大学医学雑誌，7：127，1955
22) 東北中内科学教室：Personal communication，1957
23) 福代良一：日本医事新報，1804，1958
24) 弥永電階：日本内科学会雑誌，46：951，1957
25) 高橋紘正，他：最新医学，13：315，1958
26) 山川邦夫，他：日本内科学会雑誌，46：342，1957
27) 山川邦夫，他：日本内科学会雑誌，47：830，1958
28) 群馬第1外科教室：Personal communication
29) 東京研北病院：Personal communication
30) 須賀久治，他：日本内科学会雑誌，第1957年
31) 高木大郎，望月和子：日本内科学会雑誌，47：1371，1959
32) 美甘義夫，福島孝吉：Chemotherapy，6：127，1958
33) 真下啓明：Chemotherapy，6：259，1958
34) 真下啓明：内科，2：472，1958
35) BAKER, B. L. & INGLE, D. J. : Physiological and Therapeutic Effects of Corticotropin (ACTH) and Cortisone，121，1953
36) 中川四技，佐藤義雄：Chemotherapy，6：307，1958
37) 佐々隆之，他：Chemotherapy，6：309，1958
38) 彦山賢児，青木忠夫：日伝会誌，32：348，1958
39) 彦山賢児：日伝会誌，32：349，1958
40) 平木謙，他：日伝会誌，32：315，1958
41) 菅野亭，他：日伝会誌，32：943，1959
42) 篠原研三：日本臨床結核，16：676，1957
43) 林直敬：日本臨床結核，16，670，1957
44) ZINSER, H. : Bacteriology, 352，1957
45) 高橋義一，吉沢繁美：日本臨床結核，16：686，1957
46) 北本吉一，内科，2：480，1958
47) 河盛勇造，他：Chemotherapy，6：305，1958
48) 中川圭一，小林英：Chemotherapy，7：28，1958
49) 三方一沢，他：Chemotherapy，7：26，1959
51) FELSENFELD, O. : A. J. Med. Sc., 207：60，1944
52) EMONS, C. W. : J. Bact.: 62：685，1951
54) ERICH SELIGMAN : Proceeding of the Society for Experimental Biology and Medicine，83：778，1953
56) 竹本忠実，他：Chemotherapy，4：152，1956
57) 久保郁服：カンジダ症療法（昭和32年11月），1957
58) SCHERR, G. H. : Bacteriological Proceedings，1953
59) SCHERR, G. H. : Internationale di Microbiologia，3：44，1953
60) SCHERR, G. H. : Mycopathologia et Mycologia Applicata，6：325，1953
61) 石井祝枝，他：内科，3：779，1959
62) LITTMAN, M. L. & ZIMMERMAN, L. E. : Crytococcosis，150，1956
63) 佐々隆之，他：Chemotherapy，6：310，1958
64) WILSON, H. M. & DURYEA, A. W. : The A. M. A. Arch. of Neurology and Psychiatry，66：470，1951