悪性腫瘍の化学療法に関する実験的研究補遺
（吉田肉腫皮下腫瘍を中心として）
鶴柄 賢一

慶応義塾大学医学部外科教室（指導 島田信勝教授）

（昭和34年5月11日受付）

悪性腫瘍に対する化学療法は古くから検索が続けられているが、近時急速な研究発表を示し、今日まで実験に供された化学合成剤、抗生物質、抗代謝物質、Hormone、一般細胞毒素等に拡がり、一応の実験的乃至臨床的効果を示すものも決して少なくない。

現在悪性腫瘍の治療には外科的療法及び放射線療法が多く用いられているが、いずれも限界があったとしても決定的な治療法とは云い難しい。

従って化学療法に対する期待は大きくなり、抗腫剤に関する研究は極めて重要な視点を来たされた。

微生物成はその産生物を用いて悪性腫瘍の治療を試みた報告はCOLLEY(1866)に於てナイロン菌毒素が炭腫に有効であると云われて以来、BUSCH(1868)は肉腫患者にたまた丹毒が併発し、肉腫の臨床症状が変転した症例を観察し、又ULENENHUTH(1910)等がPyocyanaseを用いて実験的移植腫瘍に腫瘍縮小効果のあることを報告している。其の後多くの研究がなされたが毒性の強いこと及び効果の不確実なため実際に供するまでには至らなかった。

CORMANN(1944)はPenicillinが臨床上に応用されはじめた頃とベニシリンにより腫瘍腫瘍の発育を阻止することを観察した。KIDD(1947)はAspergillus fumigatusの培養液が実験腫瘍に抗腫瘍性を有することを述べている。又HACKMANN(1952)はBROCKMANNの分類したActinomycin Cがラットの腫瘍やEHRICH癌に抗腫瘍性のある事を確認しているPORTER(1952)はStreptomycys albigeriから産生されるAchromycinを報告した。Achromycinは後にPuromycinと命名されたが、やはりその抗腫瘍性が強調されている。STOCK(1953)は各種抗生物質についてマウスのSarcoma 180の皮下腫瘍発育抑制作用を比較しているが、その中でもOxytetracyclineが著明な抗腫瘍性を示したと記述している。又同年STOCK(1953)がAzaserineがSarcoma 180に抗腫瘍性のあることを報告している。本邦に於いても倉沢、山本(1953)がStreptomyces erythraeonegensよりSarkomycinを発見し、石山(1952)により臨床的効果が検討された。楽(1954)によりStreptomycys Sahachiroiより分離されたCarzinophilinが報告され、
吉田肉腫は北里研究所染色室より分与されたものを使用した。

実験動物は体重 100 g 前後の家系ラット（雌雄共）を使用し、一定の固定飼料及び生食水で飼育した。
ラット群の内で増殖し、移植後 4〜5 日後の純培養状態にある吉田肉腫細胞を毛細管ピペットで臓腔より採取し、生理的食塩水で倍量に稀紡して 0.2 cc をラットの右背部皮下に移植した。

薬剤投与方法はすべて皮下移植後 4 日目より各薬剤を局所、皮下、臓腔へ 1 週間連続注射を行なった。注射開始よりノリスで縦、横、高さの 3 倍を測定し、注射開始前の体積と比較する方法及び治療開始後一定時期、即ち CP 1 回量を一定として 1 日 1〜4 回隔日投与実験、RC 1 回日投与実験、CP、MC、NMO、TESPA、単独及び併用群所投与実験では注射開始後 8 日目（移植後 11 日目）に又、CP、MC、NMO、TESPA、単独及び併用臓腔内投与実験では注射開始後 5 日目（移植後 8 日目）、10 日（移植後 13 日目）、15 日目（移植後 18 日目）にラットをエーテルで屠宰し、皮下腫瘍を摘出して重量を比較する方法で、又 CP、MC、NMO、TESPA、Sarkomycin、8-Azaguanine、Gancidin の治療実験及び併用実験では推計学を用いて腫瘍発育抑制効果を検討し、又延命効果の有無も検討した。

腫瘍組織はフォルマリン固定及びアルコール固定を行わない、ヘマトキシリンエオジン染色、一部特殊染色を行なった。各臓器はフォルマリン固定、ヘマトキシリンエオジン染色を行ない、病理組織学的に検討した。腫瘍については重量を測定し、肥大臓器につき検討した。

II. 実験成績

A) CP の吉田肉腫皮下腫瘍に及ぼす影響

1) 群所注射障蔽度

腫瘍群に注射、遠隔皮下注射による腫瘍発育抑制及び延命効果

腫瘍群に注射群では CP pro kilo 250 u、500 u、1,000 u、又は遠隔皮下注射群では pro kilo 250 u、500 u、1,000 u、2,000 u を 1 日量として、腫瘍移植後 4 日目より連続 1 週間所投又は遠隔皮下に注射して CP を使用しない対照群と比較した。

生存日数（表 1）をみると、治療群では非治療群に比較し延命しているものが多く、特に 1 例で皮下腫瘍が消退して 60 日以上生存している。

ただ非治療群に 2 例の皮下腫瘍消退を認めた。各治療群（表 2）では局所注射 250 u に 5 例、500 u に 4 例、1,000 u に 5 例と皮下腫瘍の消退を認めたが、遠隔皮下注射 250 u、500 u、1,000 u では 1 例も皮下腫瘍の消退を認める 2,000 u の場合のみ 3 例の皮下腫瘍消退を認めておらず、

<p>| 表 1 Carzinophilin 治療群生存日数 |</p>
<table>
<thead>
<tr>
<th>生存日数</th>
<th>非治療群</th>
<th>治癒群</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
<td>7***</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>52</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

* 皮下腫瘍消退せるもの
** 特殊染色にて消
*** 10 日以内に衰弱死

<p>| 表 2 Carzinophilin 治療群の腫瘍消退数及びその平均生存日数 |</p>
<table>
<thead>
<tr>
<th>日投与量</th>
<th>腫瘍消退数</th>
<th>平均生存日数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 u/kg/day</td>
<td>皮膚腫瘍消退せるもの</td>
<td></td>
</tr>
<tr>
<td>局所注射 250 u</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>同 500 u</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>同 1,000 u</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>遠隔皮下注射 250 u</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>同 500 u</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>同 1,000 u</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>同 2,000 u</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>対照群</td>
<td>25</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>腫瘍消退数</th>
<th>平均生存日数</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 u (局注)</td>
<td>5</td>
</tr>
<tr>
<td>500 u (局注)</td>
<td>10</td>
</tr>
<tr>
<td>1,000 u (局注)</td>
<td>15</td>
</tr>
<tr>
<td>2,000 u (局注)</td>
<td>20</td>
</tr>
<tr>
<td>500 u (遠隔)</td>
<td></td>
</tr>
<tr>
<td>1,000 u (遠隔)</td>
<td>23.1</td>
</tr>
<tr>
<td>2,000 u (遠隔)</td>
<td>27</td>
</tr>
</tbody>
</table>

carinophilin の使用例の腫瘍転移を及ぼす影響
腫瘍の消退しなかったラットの平均生存日数は局所注射250u群は14.8日、500u群は13.5日、1,000u群は15.6日と対照群の12.8日に比して軽度の延命効果を認めたが、遠隔皮下注射250u群は12.7日、500u群は12.5日で、対照群12.8日にと殆ど同値で延命効果を認めなかった。1,000u群では15.2日、2,000u群では23.1日と高用量の場合は軽度の延命効果を認めた。
腫瘍発育曲線（図1）は局所注射の場合は各用量群共に対照群に比し著明な発育抑制を認めるが、遠隔皮下注射では2,000u群に局所注射250u群よりやや軽度ではあるが発育抑制を認め、250u、500u、1,000u群には殆ど抑制効果が認められなかった。
2) 1回量を一定とし1日1～4回腹腔及び局所注射による腫瘍発育抑制効果
a) 腹腔内投与実験
吉田肉腫皮下移植後4日目よりCP pro kilo 1,500uを1回量とし、1日1回、2回及び4回注射を連続1週間行なった群と対照の4群に分ち、治療群は1群6例、対照群は8例としました。注射開始後8日目にラットの腹下腫瘍重量を比較した。
実験成績（表3）は対照群の平均腫瘍重量3.51gに比較して、治療群では1回注射群1.61g、2回注射群1.85g、4回注射群1.60gで治療群は対照群に比し1/2程度に発育が抑制されているが、治療群の4群の間には殆ど差を認められなかった。即ち、1日量を1,500u×2,1,500u×4と増加しても効果は増大しない様に思われる。
表3 Carzinophilin1日量を一定とし、1日1～4回治療群の平均腫瘍重量

<table>
<thead>
<tr>
<th>/kg/day</th>
<th>死亡数</th>
<th>腫瘍重量</th>
<th>平均腫瘍重量（g）</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 腹腔1,500u×1</td>
<td>0/6</td>
<td>0.4～4.5</td>
<td>1.61</td>
</tr>
<tr>
<td>同</td>
<td>1,500u×2</td>
<td>0/6</td>
<td>0.9～3.5</td>
</tr>
<tr>
<td>同</td>
<td>1,500u×4</td>
<td>0/6</td>
<td>0.4～3.6</td>
</tr>
<tr>
<td>CP 局注300u×1</td>
<td>0/6</td>
<td>0.4～3.6</td>
<td>1.45</td>
</tr>
<tr>
<td>同</td>
<td>300u×2</td>
<td>0/6</td>
<td>0.6～1.8</td>
</tr>
<tr>
<td>同</td>
<td>300u×4</td>
<td>0/6</td>
<td>0.4～0.8</td>
</tr>
<tr>
<td>対照群</td>
<td>0/8</td>
<td>2.8～4.3</td>
<td>3.51</td>
</tr>
</tbody>
</table>

b) 現実局所投与実験
CP局所注射の場合はpro kilo 250u1日1回投与で著明な発育抑制効果を認めると、更に1日1回、4回投与と増量した場合、発育抑制効果が増大するか否かを検討する目的で本実験を行なった。CPは1回量pro kilo 300uとし、1日1回、2回、4回注射及び対照の4群に分ち、治療群は1群6例、対照群は8例とした。注射開始後4日にラットの腹下腫瘍重量を比較した。
腫瘍平均重量（表3）は1回注射群1.45g、2回注射群1.03g、4回注射群0.53gで対照の3.51gに比して著明な抑制効果を認め、又1回注射群より2回、4回と増量した場合、抑制効果も増大する傾向を認めた。
3) 1日量を一定とし、分割注射（1～4回）による腫瘍発育抑制効果
a) 腹腔内投与実験
CP1日量pro kilo 2,500uとし、1日1回注射群、2回分（1,250u×2）注射群、4回分（625u×4）注射群及び対照の4群とし、治療群は1群4例、対照群は8例とし、注射開始後8日目の腫瘍重量を比較した。
実験成績（表4）は1回注射群2.70g、2回分割注射3.50g、4回分割注射2.48g、対照群6.16gで治療群は対照群に比し1/2程度に発育抑制されているが、治療群の4群の間には殆ど差を認めなかった。
表4 Carzinophilin1日量を一定とし、1日1～4回分割注射群平均腫瘍重量

<table>
<thead>
<tr>
<th>/kg/day</th>
<th>死亡数</th>
<th>腫瘍重量</th>
<th>平均腫瘍重量（g）</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 腹腔2,500u×1</td>
<td>0/4</td>
<td>1.4～4.1</td>
<td>2.70</td>
</tr>
<tr>
<td>同</td>
<td>1,250u×2</td>
<td>0/4</td>
<td>2.1～4.8</td>
</tr>
<tr>
<td>同</td>
<td>625u×4</td>
<td>0/4</td>
<td>1.4～3.0</td>
</tr>
<tr>
<td>対 照</td>
<td>0/6</td>
<td>3.8～8.6</td>
<td>6.16</td>
</tr>
<tr>
<td>CP 局注250u×1</td>
<td>0/4</td>
<td>0.9～2.6</td>
<td>1.40</td>
</tr>
<tr>
<td>同</td>
<td>125u×2</td>
<td>0/4</td>
<td>1.3～2.3</td>
</tr>
<tr>
<td>同</td>
<td>62.5u×4</td>
<td>0/4</td>
<td>0.7～2.1</td>
</tr>
<tr>
<td>対 照</td>
<td>0/8</td>
<td>3.5～7.1</td>
<td>5.31</td>
</tr>
</tbody>
</table>

b) 局所投与実験
CP1日量をpro kilo 250uとし、1日1回注射群、2回分（1,250u×2）注射群、4回分（625u×4）注射群及び対照の4群とし、治療群は1群4例、対照群は8例とし、注射開始後8日目の腫瘍重量を比較した。
実験成績（表4）は1回注射群1.80g、2回分注射群1.42g、4回分注射群5.31gで治療群は何れも対照群に比して発育抑制されているが、治療群の間には殆ど差を認めなかった。即ち腹腔内局所投与で何れの場合も1日1回注射と一定として、これを分割して2～4回に注射しても1回注射に比し有意の差を認めなかった。
B) MA、MCの吉田肉腫皮下移植に及ぼす影響
1) MAの腫瘍局所注射による発育抑制効果及び
延命効果
MA 治療群は pro kilo 10 mcg, 100 mcg 及び 500 mcg
投与群並びに对照群の 4 群に分かち、各群 8 例を以て 1 群
とした。
生存日数 (表 5) は治療群では非治療群に比して著明に
延命を認め、腫瘍が消退して 60 日以上生存したものが
治療群に例あるが非治療群には 1 例も認めなかった。
腫瘍が消退しなかったラットの平均生存日数 (表 6) は
10 mcg 群 14.8 日、100 mcg 群 16.5 日、500 mcg 群
19.5 日で对照群の 13.3 日に比して延命を認めた。

表 5 Mitomycin A 使用群生存日数

<table>
<thead>
<tr>
<th>生存日数</th>
<th>非治療群</th>
<th>治療群</th>
<th>生存日数</th>
<th>非治療群</th>
<th>治療群</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>3</td>
<td>27</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
<td>28</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>29</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>30</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td>4</td>
<td>*</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>8</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>8</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>8</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 皮下腫瘍の消退せるもの

表 6 Mitomycin A 使用群平均生存日数

<table>
<thead>
<tr>
<th>1 日投与量 mcg/kg</th>
<th>動物数</th>
<th>皮下腫瘍の消退せるもの</th>
<th>平均生存日数</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>8</td>
<td>1</td>
<td>19.5</td>
</tr>
<tr>
<td>100</td>
<td>8</td>
<td>1</td>
<td>16.5</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>2</td>
<td>14.8</td>
</tr>
<tr>
<td>対照群</td>
<td>8</td>
<td>0</td>
<td>13.3</td>
</tr>
</tbody>
</table>

腫瘍発育曲線 (図 2) をみると、各群例々も対照に比
し著明に腫瘍発育が抑制されている。
2) MC の腫瘍局所注射による腫瘍発育抑制効果及び
延命効果
MC 治療群は pro kilo 10 mcg, 100 mcg, 500 mcg 及
び 1,000 mcg 投与群の 4 群並びに对照群の 5 群に分かち、
各群 8 例を以て 1 群とした。
生存日数 (表 7) は治療群は対照群に比して著明に延
命を認め、腫瘍が消退して 60 日以上生存したものを 2
例認めた。対照群に自然治癒例は 1 例も認めなかった。

表 7 Mitomycin C 使用群生存日数

<table>
<thead>
<tr>
<th>生存日数</th>
<th>非治療群</th>
<th>治療群</th>
<th>生存日数</th>
<th>非治療群</th>
<th>治療群</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>2</td>
<td>3</td>
<td>16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>6</td>
<td>17</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>23</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>2</td>
<td>*</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>計 8</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 皮下腫瘍の消退せるもの

表 8 Mitomycin C 使用群平均生存日数

<table>
<thead>
<tr>
<th>1日投与量 mcg/kg</th>
<th>動物数</th>
<th>皮下腫瘍の消退せるもの</th>
<th>平均生存日数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>8</td>
<td>1</td>
<td>16.0</td>
</tr>
<tr>
<td>500</td>
<td>8</td>
<td>1</td>
<td>14.3</td>
</tr>
<tr>
<td>100</td>
<td>8</td>
<td>0</td>
<td>11.3</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>0</td>
<td>10.6</td>
</tr>
<tr>
<td>対照群</td>
<td>8</td>
<td>0</td>
<td>10.6</td>
</tr>
</tbody>
</table>

図 2 Mitomycin A 使用群ラット下腹部腫瘍発育曲線

図 3 Mitomycin C 使用群ラット下腹部腫瘍発育曲線
平均生存日数（表8）をみると、1,000 mcg 群16.0日、500 mcg 群14.3日、100 mcg 群13.1日、10 mcg 群10.6日と対照群の10.6日に比し延命を認めなかった。腫瘍発育曲線（図3）をみると、1,000 mcg 群及び500 mcg 群では対照群と比し著明に発育抑制を認め、100 mcg 群では軽度の発育抑制を認めると、10 mcg 群では殆ど抑制効果を認めなかった。

C) RC4 (P-phenylene-diphosphoric acid tetraethyleneimine)のニ古田肉腫皮下腫瘍に及ぼす影響
（表9）
腹部内注射群はpro kilo 100 mg、50 mg及び10 mg投与群、局所注射群は50 mg、10 mg投与群及び対照群の6群に分か、治療群は1群8例、対照群は15例とし、

表9 RC4治療群平均腫瘍重量

<table>
<thead>
<tr>
<th>日数</th>
<th>注射開始後8日目</th>
<th>屠殺</th>
</tr>
</thead>
<tbody>
<tr>
<td>1日 pro kilo</td>
<td>成績</td>
<td></td>
</tr>
<tr>
<td>RC4100mg腹</td>
<td>7/8</td>
<td>1/8</td>
</tr>
<tr>
<td>RC450mg 腹</td>
<td>0/8</td>
<td>5/8</td>
</tr>
<tr>
<td>RC410mg 腹</td>
<td>0/8</td>
<td>2/8</td>
</tr>
<tr>
<td>RC450mg局注射</td>
<td>0/8</td>
<td>3/8</td>
</tr>
<tr>
<td>RC410mg 肌注射</td>
<td>0/8</td>
<td>2/8</td>
</tr>
<tr>
<td>対照群</td>
<td>4/15</td>
<td>0/152.8〜7.54.72</td>
</tr>
</tbody>
</table>

実験動物の死亡率は100 mg 腹腔注射群で8例中7例が死亡し、生存した1例も下痢が著明で体重減少が著しかった。その他の治療群には死亡例が多く、対照群では15例中4例が死亡した。体重減少は100 mg 腹腔注射群の全例に著明に認め、50 mg 腹腔あるいは局所注射群では初めて8例中7例に体重減少を認め、10 mg 腹腔又は局所注射群では体重増加を認めた。

腫瘍発育抑制効果をみると、100 mg 腹腔注射群では腫瘍減数せるものの1例で、腫瘍平均重量は0.09 gであった。50 mg 腹腔注射群では腫瘍減数せるものの5例で、腫瘍平均重量は0.06 gであり、10 mg 腹腔注射群では腫瘍減数せるもの2例で、腫瘍平均重量0.14 gであった。

50 mg局所注射群では腫瘍の減数せるものの3例で、腫瘍平均重量0.09 gで、局所注射群では腫瘍の減数せるものの2例で、腫瘍平均重量0.10 gであり、対照群には自然治癒は1例も認められず、腫瘍平均重量は4.72 gで、治療群は局所注射の場合は勿論、腹部を介して2次的に作用しめた場合も、局所注射の場合と殆ど同程度に抑制効果が認められた事は注目すべき点である。

D) MCとCPの併用局所注射による吉田肉腫皮下腫瘍に及ぼす影響
CP及びMCは単独使用では局所注射の場合は吉田肉腫皮下腫瘍に対して著明な抗腫瘍性を示すが、両者を併用して局所注射した場合抗腫瘍性に作用するか、拮抗的に作用するかを検討する目的で本実験を行なった。

治療実験はCP及びMCの1日 pro kilo 投与量よりⅠ群 CP 500 u + MC 100 mcg、Ⅱ群 CP 500 u + MC 100 mcg、Ⅲ群 CP 250 u + MC 100 mcg、Ⅳ群 CP 250 u + MC 10 mcg及び対照の5群に分ち、各群8例を以て1群とした。

表10 CP、MC使用治療群平均生存日数

<table>
<thead>
<tr>
<th>Pro kilo 1日投与量</th>
<th>動物数</th>
<th>腹部腫瘍の消減せるもの</th>
<th>平均生存日数</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ⅰ) 500 u</td>
<td>100 mcg</td>
<td>8 4</td>
<td>32.0</td>
</tr>
<tr>
<td>(Ⅱ) 500 u</td>
<td>100 mcg</td>
<td>8 4</td>
<td>21.5</td>
</tr>
<tr>
<td>(Ⅲ) 250 u</td>
<td>100 mcg</td>
<td>8 4</td>
<td>30.3</td>
</tr>
<tr>
<td>(Ⅳ) 250 u</td>
<td>10 mcg</td>
<td>8 3</td>
<td>31.0</td>
</tr>
</tbody>
</table>

生存日数（表10）をみると、腫瘍が全滅して60日以上生存したものはⅠ群4例、Ⅱ群4例、Ⅲ群4例、Ⅳ群3例で、対照群には認めなかった。

腫瘍の消滅しなかったものの平均生存日数はⅠ群32.0日、Ⅱ群21.5日、Ⅲ群30.3日、Ⅳ群31.0日で対照群の12.8日にて著明な延命効果を認めた。皮下腫瘍発育抑制（図4）はⅠ群が最も著明で、Ⅱ群、Ⅲ群は略
<table>
<thead>
<tr>
<th>動物番号</th>
<th>投与薬剤及び単位</th>
<th>腫瘍容積比 1週後</th>
<th>体重 増減</th>
<th>生存日数</th>
<th>動物番号</th>
<th>投与薬剤及び単位</th>
<th>腫瘍容積比 1週後</th>
<th>体重 増減</th>
<th>生存日数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B1, C1, D1, F1</td>
<td>0.42</td>
<td>+24.0</td>
<td>32日</td>
<td>41</td>
<td>B2, C2, D1, G2</td>
<td>0.41</td>
<td>+14.0</td>
<td>60日</td>
</tr>
<tr>
<td>2</td>
<td>B1, C1, E1, F1</td>
<td>0.98</td>
<td>+39.0</td>
<td>60日</td>
<td>42</td>
<td>B2, B1, D1, F1</td>
<td>0.37</td>
<td>死亡</td>
<td>11日</td>
</tr>
<tr>
<td>3</td>
<td>B1, D1, E1, F1</td>
<td>1.00</td>
<td>+22.0</td>
<td>60日</td>
<td>43</td>
<td>C1, C2, E1, F1</td>
<td>0.40</td>
<td>+48.0</td>
<td>60日</td>
</tr>
<tr>
<td>4</td>
<td>B1, D1, E1, G1</td>
<td>0.64</td>
<td>+17.0</td>
<td>60日</td>
<td>44</td>
<td>C1, C2, D1, F1</td>
<td>0.66</td>
<td>1.66</td>
<td>24日</td>
</tr>
<tr>
<td>5</td>
<td>B1, D1, D1, E1</td>
<td>1.00</td>
<td>+21.0</td>
<td>60日</td>
<td>45</td>
<td>C1, C2, E1, G1</td>
<td>0.26</td>
<td>-1.0</td>
<td>17日</td>
</tr>
<tr>
<td>6</td>
<td>B1, D1, D1, F1</td>
<td>0.88</td>
<td>+31.0</td>
<td>60日</td>
<td>46</td>
<td>A1, B1, C1, F1</td>
<td>0.57</td>
<td>+90.0</td>
<td>60日</td>
</tr>
<tr>
<td>7</td>
<td>A1, C1, D1, E1</td>
<td>1.20</td>
<td>+37.0</td>
<td>60日</td>
<td>47</td>
<td>A1, B1, C1, F1</td>
<td>0.93</td>
<td>+65.0</td>
<td>60日</td>
</tr>
<tr>
<td>8</td>
<td>C1, D1, E1, F1</td>
<td>1.42</td>
<td>+18.0</td>
<td>44日</td>
<td>48</td>
<td>A1, D1, C1, G1</td>
<td>0.42</td>
<td>+35.0</td>
<td>60日</td>
</tr>
<tr>
<td>9</td>
<td>F1, D1, E1, F1</td>
<td>0.64</td>
<td>+17.0</td>
<td>60日</td>
<td>49</td>
<td>A1, D1, C1, G1</td>
<td>0.89</td>
<td>+26.0</td>
<td>60日</td>
</tr>
<tr>
<td>10</td>
<td>A1, B1, C1, D1</td>
<td>0.31</td>
<td>+40.0</td>
<td>41日</td>
<td>51</td>
<td>A1, B1, D1, F1</td>
<td>0.75</td>
<td>+24.0</td>
<td>60日</td>
</tr>
<tr>
<td>11</td>
<td>A1, B1, D1, E1</td>
<td>0.18</td>
<td>+17.0</td>
<td>60日</td>
<td>52</td>
<td>A1, B1, D1, E1</td>
<td>6.00</td>
<td>9.00</td>
<td>+32.0</td>
</tr>
<tr>
<td>12</td>
<td>A1, B1, D1, F1</td>
<td>0.55</td>
<td>+22.0</td>
<td>25日</td>
<td>53</td>
<td>A1, B1, D1, E1</td>
<td>0.37</td>
<td>+27.0</td>
<td>60日</td>
</tr>
<tr>
<td>13</td>
<td>A1, B1, C1, D1</td>
<td>0.25</td>
<td>+3.0</td>
<td>50日</td>
<td>54</td>
<td>A1, B1, C1, D1</td>
<td>3.50</td>
<td>+49.0</td>
<td>60日</td>
</tr>
<tr>
<td>14</td>
<td>A1, B1, E1, F1</td>
<td>0.29</td>
<td>-15.0</td>
<td>60日</td>
<td>55</td>
<td>A1, C1, D1, G1</td>
<td>0.77</td>
<td>+45.0</td>
<td>60日</td>
</tr>
<tr>
<td>15</td>
<td>A1, B1, C1, E1</td>
<td>0.66</td>
<td>+1.0</td>
<td>60日</td>
<td>56</td>
<td>A1, B1, C1, E1</td>
<td>0.62</td>
<td>+20.0</td>
<td>60日</td>
</tr>
<tr>
<td>16</td>
<td>A1, B1, C1, F1</td>
<td>0.73</td>
<td>+52.0</td>
<td>60日</td>
<td>57</td>
<td>A1, B1, C1, F1</td>
<td>0.66</td>
<td>+7.0</td>
<td>45日</td>
</tr>
<tr>
<td>17</td>
<td>A1, B1, C1, E1</td>
<td>0.30</td>
<td>-11.0</td>
<td>60日</td>
<td>58</td>
<td>A1, B1, C1, E1</td>
<td>0.93</td>
<td>2.87</td>
<td>-5.0</td>
</tr>
<tr>
<td>18</td>
<td>A1, B1, C1, F1</td>
<td>1.14</td>
<td>+52.0</td>
<td>60日</td>
<td>59</td>
<td>A1, B1, C1, F1</td>
<td>0.69</td>
<td>死亡</td>
<td>15日</td>
</tr>
<tr>
<td>19</td>
<td>A1, B1, C1, E1</td>
<td>0.00</td>
<td>+41.0</td>
<td>60日</td>
<td>60</td>
<td>A1, B1, C1, E1</td>
<td>0.50</td>
<td>+16.0</td>
<td>29日</td>
</tr>
<tr>
<td>20</td>
<td>A1, B1, C1, F1</td>
<td>0.46</td>
<td>+29.0</td>
<td>60日</td>
<td>61</td>
<td>A1, B1, C1, F1</td>
<td>0.50</td>
<td>+9.0</td>
<td>60日</td>
</tr>
<tr>
<td>21</td>
<td>A1, B1, C1, E1</td>
<td>4.19</td>
<td>+40.0</td>
<td>19日</td>
<td>62</td>
<td>A1, B1, C1, E1</td>
<td>1.00</td>
<td>+42.0</td>
<td>21日</td>
</tr>
<tr>
<td>22</td>
<td>A1, B1, C1, F1</td>
<td>0.15</td>
<td>-4.0</td>
<td>23日</td>
<td>63</td>
<td>A1, B1, C1, F1</td>
<td>0.20</td>
<td>死亡</td>
<td>16日</td>
</tr>
<tr>
<td>23</td>
<td>A1, B1, C1, E1</td>
<td>0.55</td>
<td>-4.0</td>
<td>15日</td>
<td>64</td>
<td>A1, B1, C1, E1</td>
<td>2.50</td>
<td>+38.0</td>
<td>60日</td>
</tr>
<tr>
<td>24</td>
<td>A1, B1, C1, F1</td>
<td>0.49</td>
<td>+15.0</td>
<td>60日</td>
<td>65</td>
<td>A1, B1, C1, F1</td>
<td>0.14</td>
<td>+36.0</td>
<td>60日</td>
</tr>
<tr>
<td>25</td>
<td>A1, B1, C1, E1</td>
<td>1.06</td>
<td>+61.0</td>
<td>60日</td>
<td>66</td>
<td>A1, B1, C1, E1</td>
<td>1.00</td>
<td>+29.0</td>
<td>60日</td>
</tr>
<tr>
<td>26</td>
<td>A1, B1, C1, E1</td>
<td>0.21</td>
<td>+17.0</td>
<td>60日</td>
<td>67</td>
<td>A1, B1, C1, E1</td>
<td>0.62</td>
<td>3.80</td>
<td>+19.0</td>
</tr>
<tr>
<td>27</td>
<td>A1, B1, C1, F1</td>
<td>0.66</td>
<td>+42.0</td>
<td>30日</td>
<td>68</td>
<td>A1, B1, C1, E1</td>
<td>0.33</td>
<td>+15.0</td>
<td>21日</td>
</tr>
<tr>
<td>28</td>
<td>A1, B1, C1, E1</td>
<td>1.60</td>
<td>+61.0</td>
<td>60日</td>
<td>69</td>
<td>A1, B1, C1, E1</td>
<td>0.20</td>
<td>+30.0</td>
<td>60日</td>
</tr>
<tr>
<td>29</td>
<td>A1, B1, C1, E1</td>
<td>0.82</td>
<td>+11.0</td>
<td>24日</td>
<td>70</td>
<td>A1, B1, C1, E1</td>
<td>0.26</td>
<td>+17.0</td>
<td>60日</td>
</tr>
<tr>
<td>30</td>
<td>A1, B1, C1, E1</td>
<td>1.10</td>
<td>+41.0</td>
<td>21日</td>
<td>71</td>
<td>A1, B1, C1, E1</td>
<td>0.83</td>
<td>+9.0</td>
<td>60日</td>
</tr>
<tr>
<td>31</td>
<td>A1, B1, C1, E1</td>
<td>0.73</td>
<td>+22.0</td>
<td>49日</td>
<td>72</td>
<td>A1, B1, C1, E1</td>
<td>0.33</td>
<td>+9.0</td>
<td>60日</td>
</tr>
</tbody>
</table>

1）移植後 33日目に再発
2）移植後 20日目に再発
略同程度、N 群の抑制が最も軽度であった。前回の CP、MC の単独局所注射実験と比較して CP + MC の局所注射による併用は協力的に作用する様に思われる。

E) CP, MC, NMO, Sarkomycin, 8-Azaguanine, TESPA, Gancidin の単独及び併用使用による
吉田肉腫皮下腫瘍に及ぼす影響
吉田肉腫皮下腫瘍に対する上記各薬剤の抗腫瘍性を比較検討し、特に CP を中心とした各種抗癌剤の併用効果について検討した。

1) 推計学的検討
推計学を用いて 7 要因、3 水準にて各種抗癌剤の吉田肉腫皮下腫瘍に対する効果及び併用効果を検討した。

<table>
<thead>
<tr>
<th>表 11 の 1 使用薬剤及び投与量</th>
</tr>
</thead>
<tbody>
<tr>
<td>薬剤名</td>
</tr>
<tr>
<td>A2</td>
</tr>
<tr>
<td>A4</td>
</tr>
<tr>
<td>B2</td>
</tr>
<tr>
<td>B5</td>
</tr>
<tr>
<td>C4</td>
</tr>
<tr>
<td>C6</td>
</tr>
<tr>
<td>D1</td>
</tr>
<tr>
<td>D2</td>
</tr>
<tr>
<td>E2</td>
</tr>
<tr>
<td>E3</td>
</tr>
<tr>
<td>F2</td>
</tr>
<tr>
<td>F3</td>
</tr>
<tr>
<td>G2</td>
</tr>
<tr>
<td>G4</td>
</tr>
</tbody>
</table>

各薬剤使用量（表 11 の 1）は CP は pro kilo 2,000 u, 400 u, MC は 500 mcg, 100 mcg, NMO は 2.5 mg, 0.5 mg, Azan は 50 mg, 10 mg, Sarkomycin は 150 mg, 30 mg, TESPA は 1.5 mg, 0.3 mg, Gancidin は 2,000 mcg, 400 mcg とし、腫瘍移植 4 日後より 1 週間連続腹腔内注射を行なった。使用剤(T 81 例)に腫瘍体験比、生存日数（表 11 の 2）を通じて治療群では何れも対照群に比し腫瘍発育抑制。延命効果は著明に認められた。対照の生存日数は 20 日であり、治療群には腫瘍消長して 60 日以上生存したもの 81 例中 45 例、56% に認められた。これを推計学的に考察すると、延命効果では各薬剤間に及ぶ併用法別に有意の差を認めなかった。然し 1 週間後の腫瘍発育抑制効果では分散分析表（表 11 の 3）の如く、単独使用において MC、NMO、TESPA は他の薬剤に比し有意の差で有効であったが、CP を中心とした併用使用では特に有意な併用効果を認めたものはなかった。
3.44 gで治療群はそれに比して1/2～1/4程度に発育が抑制され、単独使用ではNMOが最も抑制著明で、TESPA、MC、CPの順で発育抑制された。併用使用ではCP+NMOが最も抑制著明で、CPにTESPAを併用した場合はTESPA単独使用の場合と若干同程度で、CPにMC併用の場合もMC単独と若干同程度であった。又ラテの体重はNMO単独、CP+NMO、CP+TESPAの場合注射開始前に比し減少し、又は増加を認めなかった。

10日目各群（表13）の平均腫瘍重量は単独使用ではCP3.30 g、MC0.27 g、NMO0.23 g、TESPA0.17 gであり、併用使用ではCP+MC0.40 g、CP+NMO0.13 g、CP+TESPA0.40 gであった。対照群は6.07 gで、CP単独使用は対照の1/2程度に発育抑制を認めなかったが、NMO、MC、TESPA単独使用では若干同程度に対照の1/3程度に発育が抑制された。併用使用ではCP+NMOが各単独使用の場合より抑制著明であるが、CP+MC、CP+TESPAではMC、TESPA単独使用の場合より抑制著明であった。

死亡例はCP単独及びCP+MCに各1例を認めた。体重はNMO単独、CP+NMO併用の場合のみに減少を認めた。

15日目各群の単独使用ではCP群は3例とも移植後10、14日に死亡した。又MC群では1例が移植後12日に死亡した。

平均腫瘍重量（表14）はMC0.45 g、NMO0.53 g、TESPA0.83 gであり、併用使用ではCP+MC1.03 g、CP+NMO0.33 g、CP+TESPA0.40 gで、CPにNMO、TESPAを併用した場合、各単独使用より抑制効果著明であった。

5、10、15日目各群の全例を検討してみると、単独使用ではNMOが最も抑制効果著明で、併用使用ではCP+NMOが最も著しく、CPにNMO、TESPAを併用した場合、各単独使用の場合よりやや抑制効果著明で、CPにMC併用の場合はMC単独使用よりやや抑制効果軽度であった。

3）CP、MC、NMO、TESPAの単独及び併用局所注射による吉田肉皮膚腫瘍への影響

単独投与はCP300 u、MC60 mcg、NMO1 mg、TESPA0.2 mg、併用投与はCP300 u+MC60 mcg、CP300 u+NMO1 mg、CP300 u+TESPA0.2 mg、

表15 注射開始後8日目腫瘍群（局所注射）平均腫瘍重量

CP 300 u	0/9	0.3～2.6	1.10	+8.4
MC 60 mcg	0/9	0.7～3.0	1.35	+6.0
NMO 1 mg	0/9	0.2～0.4	0.31	+5.4
TESPA 0.2 mg	0/9	0.2～2.2	1.01	+9.8
CP300 u+MC60 mcg	0/9	0.4～2.0	1.03	+5.4
CP300 u+NMO1 mg	0/9	0.2～6.0	0.32	-0.8
CP300 u+TESPA0.2 mg	0/9	0.2～1.3	0.77	+7.6

<table>
<thead>
<tr>
<th>群</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>移植</td>
<td></td>
</tr>
<tr>
<td>注</td>
<td></td>
</tr>
</tbody>
</table>
mg とした。各群共に注射開始後 8 日目にエニチにて毎
し、皮下腫瘍重量を比較した。
腫瘍平均重量（表 15）は単独投与群では CP 1.10 g、MC 1.35 g、NMO 0.31 g、TESPA 1.01 g であり、併
用投与群では CP+MC 1.03 g、CP+NMO 0.32 g、CP +TESPA 0.77 g で対照群の 5.80 g に比し何れも著明
な発育抑制効果が見られる。
単独投与では NMO が最も腫瘍発育抑制著明であり、
併用投与では CP+NMO が最も抑制著明で、CP に MC、
TESPA を併用した場合、両単独使用の場合よりやや抑
制著明であった。ラット体重は CP+NMO 群のみ注
射開始前に比し軽度の減少を認めた。
F） 各抗腫瘍剤の脾に及ぼす影響
吉田肉腫皮下腫瘍を移植した担担ラットの脾重量百分
率（表 16）は 1.57、0.99、0.99、1.16、1.29、1.19 の
如く、非担担ラットの脾百分率 0.48 に比して 2～3 倍
程度に肥大を認めた。脾重量百分率は脾重量を体重で
割り、之に 100 乗じ、％とした。
治療群の脾重量百分率（表 17）は CP 1,500 u/kg 1
～4 回腹腔内注射群では対照の 0.99 に比し、0.54、
0.58、0.47 で明るく縮小を示し、300 u/kg 1～4 回所
注射群でも対照の 0.99 に比し、0.64、0.67、0.52 を縮
小を認めた。
又 CP 2,500 u/kg×1、1,250 u/kg×2、625 u/kg×4
腹腔内注射群（表 18）では対照の脾重量百分率 1.57
に比し 0.90、0.69、1.02 と脾が縮小し、250 u/kg×1、
125 u/kg×2、62.5 u/kg×4 局所注射群でも対照の 0.99
に比し 0.75、0.86、0.72 の如く脾の縮小を認めた。
RC4 治療群（表 19）では、極めて著明な脾の縮小を
認めた。RC4 100 mg/kg 腹腔内注射群は 0.16、50mg/kg
腹腔内注射群は 0.30、10 mg/kg 腹腔内注射群は 0.46、
又 50 mg/kg 局所注射群は 0.21、10 mg/kg 局所注射群
では 0.48 と対照群の 1.29 に比し著明に縮小するのみ
でなく、非担担ラットの脾重量百分率 0.48 より縮小し
ている。又剤投与量の増大する程脾の縮小が著明であ
った。
CP、MC、NMO、TESPA、CP+NMO、CP+TESPA
投与の場合（表 20）も、腹腔内注射群では 0.59～0.95、
局所注射群では 0.72～1.20 で何れも担担ラットの脾重量
百分率 1.16、1.29 に比し縮小を認めるが、非担担ラ
ッテの脾重量百分率 0.48 よりは大であった。
G） 病理組織学的所見
1） CP 治療群（表 21）
非治療の対照群では極く一部に核濃縮及び核破壊等を
含むヒマノ性腫死を認めるものもあるが、壊死傾向を全
く認めないものもある。
CP 治療群では CP 使用量が増加するに従って変性死が著明となっている。これ等のものについて、酵素系においてはアルカリ及び酸フォスファターゼ、ペプチダーゼの変動を伴う RNA 多糖類、脂肪の状態を検討した。酵素系は 3 者共使用例では増加の傾向がある一方、RNA は反対に減少して行く傾向がある。脂肪は次第に増量するが、多糖類は酵素系と同様変化する程度である。腫瘍組織の変性度は CP 注射群では高値に見られますが、遠隔皮下注射筋膜内注射例の如く 2 次的に投与した場合は変性死傾向は軽度であった。

2）MA 及び MC 治療群（表 22）

MA 治療群では 500 mcg 投与では中等度の局限性変性死及び軽度のビマン性変性死を認め、100 mcg 投与では軽度の局限性変性及び中等度のビマン性変性死を認め、10 mcg 投与では軽度のビマン性変性死を認め、1 mg 投与では軽度の変性死を認め、100 mcg 投与では軽度の変性死を認め、10 mg 投与では軽度の変性死を認め、1,000 mcg 投与では軽度の変性死を認め、10,000 mcg 投与では軽度の変性死を認め、100 mcg 投与では軽度の変性死を認め。
CHEMOTHERAPY
NOV. 1959

目に死亡した1例に中等度の充盈を認めた。

ii) 肺 腫
20u/kgでは60日間注射しても全く変化がない。100u/kg20日連続注射では著変はないが、60日間注射すると一部に点状出血を認める。1,000u/kg、5,000u/kgでは20日注射すると一部に点状出血及び気管分沁物の認められるが、60日間注射では小出血液を認める他、気管分沁物は却って減少している。血管充盈像は軽度である。

iii) 腎 腫
血管充盈は各群より殆どと差を認めない。1,000u/kg、5,000u/kg注射のものに皮膚共小出血液を見たものがあるが、実質細胞の変性はない。

iv) 脾 腫
脾には著変を認めない。5,000u/kgのものに高度の血管充盈を認めた。

7) 治療実験ラットの肝、腎、脾の病理所見
前記実験に於けるラットの肝、腎、脾の病理組織所見は一般に著変を認めないものが多いために、一部に肝のグリソニ氏病及び肝小葉中心部に血管充盈を認めたものがあり、又腎に於て一部に皮質、腎質に軽度の血管充盈を認め、又皮膚共に小出血液を認めたものがあるが、実質細胞の変性は認められなかった。又脾に於ては対照群ラットに於て細網細胞の増殖、腫大が認められ、腫胞は萎縮性であるが、腫胞は殆どと認められず、血鉄症、骨髄細胞の出現が認められた。治療群ラットの脾はCP治療群に於ては一般に赤血の萎縮は極めて軽度であるが、RC、MC、NMO、TESPA治療群の一部には赤血の萎縮が著しく、又繊維化の傾向が認められた。然し腫胞の萎縮は対照群に比し特に著明ではなかった。血鉄症、骨髄細胞の出現は同様に見られた。

III 総括並びに考察
現在一般に使用されている実験腫瘍は腹水型腫瘍とし て1944年吉田によりアゾ色素飼育と酸性カリ塩化物培養中の中ラットに発生した吉田肉腫を初めとして、弧竜肉腫、武田肉腫、白濁肉腫、腹水肝腫瘍等多くの腫瘍があり、外

国に於てもEHRlich癌、Sarcoma 180 を初めとして多くの腹水癌が実用に供されている。皮下腫瘍もC,H乳癌、滋沢キノン癌、果糖肉腫、千葉家禽肉腫等本邦にて発見されたものを初めとして、Sarcoma 180、Adenocarcinoma C,H, HBA, Walker Sarcoma等多くの結節型腫瘍が使用されている。

吉田肉腫に対する各種抗癌剤の効果については、腹水型に対しては吉田ii)による詳細な研究があり、その他の多くの報告があるが、皮下結節型に対しては堀川iii)がNitrominの著効を認める。入谷iv)がSarcomaの抗癌性、特にX線との併用効果について報告し、柄口v)がTESPAの抗癌性について報告しているに過ぎない。

人体末梢型腫瘍は多くは結節型であり、その治療を目的とした実験の研究としては、腹水型腫瘍に対して抗癌剤が認められた薬剤について更に腹水癌に皮下に移植し或は結節型腫瘍を移植して、これらに対する作用を検討することは極めて重要なことである。又各抗癌剤が一般に腹水型に対する効果が著明であるが、結節型腫瘍に血液又は血液を介して2次的に作用せしめる時は効果の減少する傾向が認められる。従って私はCPを中心としてその有効投与量、投与方法及び他の薬剤との併用効果を検討するため吉田肉腫皮下結節型を選んだ。

吉田肉腫皮下腫瘍の移植数、自然治癒率（表23）をみると、全実験を通じて用いたラット数618例中対照群133例、治療群481例、移植有数5例で移植数は99.2％で、吉田iv)の70.7％、保市vi)の75.9％、堀川iii)の93.2％等の成績より良好である。又対照群の内発数することなく生存日数を調べ得た動物数61例中自然治癒と思われる経過をとり一度増大した腫瘍が消滅し、60日以上生存したもの4例で、自然治癒率は6.6％で、堀川iii)による7.0％と略々同値を示した。

吉田肉腫皮下移植動物の平均生存日数は吉田iv)によると14日以上生存すると報告されているが、飼治vii)は8日、堀川iii)は17.3日、日阪v)は13.5日、大里vi)は15.4～23.8日、入谷iv)は13.5日、小塚v)は14.9日等

| 表23 吉田肉腫皮下腫瘍移植率、自然治癒率 |
|-----------------|-----------------|
| 全 実 験 動 物 数 | 618 |
| 移 植 障 性 動 物 数 | 5 |
| 移 植 率 | 99.2％ |
| 治 療 群 動 物 数 | 481 |
| 対 照 群 動 物 数 | 132 |
| 生 存 日 数 を みた 動 物 数 | 61 |
| 内 自然治癒数 | 4 |
| 自然治癒率 | 6.6％ |
報告者により相当のひらがんが認められ、私の実験では14.2日であった。

同生存日数の分布（図5）は60％以上を14日以内に死亡した。

吉田肉腫は皮下に移植すると皮下結合織内でも細胞は直ちに豊潤で増殖を営み、局所の結合織は通常細胞結合織より肉芽性結合織への改造が行なわれ、結局それが腫瘍の支持組織となる。

対照群の発育曲線（図6）は実験により多少の差は認められるが、移植後13日目には移植後4日目に比し約15倍程度に発育する。移植後摘出した腫瘍重量（表14）は移植後8日目では平均重量3.44g、11日目では実験により5.31g～6.16gと差はあるが、総平均重量は5.07gである。13日目では6.07g、18日目には13.07gの如く発育する。

各薬剤の各種移植腫瘍に対する報告と今回の実験成績を比較してみると、

![図6 吉田肉腫皮下移行群発育曲線](image_url)

表24 吉田肉腫皮下移植群平均腫瘍重量（g）

<table>
<thead>
<tr>
<th>実験番号</th>
<th>注射開始後日数</th>
<th>5日</th>
<th>8日</th>
<th>10日</th>
<th>15日</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>移植後日数</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.44/9</td>
<td>5.80/13</td>
<td>6.07/6</td>
<td>13.03/6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.31/8</td>
<td>6.16/6</td>
<td>5.31/8</td>
<td>4.72/15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.07/50</td>
<td>6.07/6</td>
<td>6.07/6</td>
<td>6.07/6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.07/50</td>
<td>6.07/6</td>
<td>6.07/6</td>
<td>6.07/6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.07/50</td>
<td>6.07/6</td>
<td>6.07/6</td>
<td>6.07/6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.07/50</td>
<td>6.07/6</td>
<td>6.07/6</td>
<td>6.07/6</td>
<td></td>
</tr>
</tbody>
</table>

I. CP

吉田腫瘍の増殖を比較し、腹水肝癌の再移植腫瘍に腹腔内皮下注射時も著明な抗腫瘍性、延命効果を認め、特に反復注射の場合その効果が著明であった。

杉本腫瘍は腹水型EHRICH癌、Krebs 2、Sarcoma 180に著明な効果を示すが、皮下結節型EHRICH癌、Sarcoma 180には殆ど効果を認めなかったと報告している。相沢腫瘍は武田腫瘍、吉田腫瘍腹水型に強い抑制性、吉田腫瘍に程々高い延命効果を認める、布施腫瘍は吉田腫瘍腹水型を用いてCPの抗腫瘍性を検討してprokilo 10,000u により1ヶ月以上の延命を認め、又著明な腫瘍細胞の減少及び全の消失を認める。青木腫瘍は腹水肝癌皮下型に皮下移植後6日目より2,500u/kgを20日間高濃度皮下注射して腫瘍縮小を認め、更に組織化学的に検討している。

私の実験成績は皮下腫瘤局所に250u/kgのCPを連続1週間注射した場合、移植対照群皮下2,000u/kgを連続1週間注射した場合よりやや抑制効果及び延命効果を著明に、又腹腔内投与の場合は局所投与薬の10倍量を使用しても局所投与の場合に比し抑制効果が少ない。このことは実地臨床に於て腹腔内にCP10,000u以上の大量を投与しても局所に効果を認めても白血球減少作用の少ないことと対照して興味ある所見である。又腹腔内投与の場合1日量を1,500u/kg×1、1,500u/kg×2、1,500u/kg×4と増量しても効果が殆ど増大しないが、局所注射の場合は1日量と300u/kg×1、300u/kg×2、300u/kg×4と増量すると抑制効果が増大する。

又1日量を一定にこれを2回、4回と分割して注射した場合、腹腔内局所注射時も抑制効果は略々同程度であった。このことは実地臨床に於て同一薬を分割して頻回注射しても抑制効果は増大しない事を示し臨床に使用する場合1日1回全量を注射する方が患者の負担も少々優れている事を示している。CPは吉田腫瘍腹水型には著効を示し、皮下型に対しては局所注射した場合は著効を示すが、遠隔皮下注射、腹腔内注射の如く体液を介して2次的に作用させた場合抗腫瘍性は著減する様に思われる。又臨床試験に於てても教室の久保内は癌性腫瘍に直接腹腔内に注射した場合や、腫瘍局所に湿布成は局所注射した場合著効を認めている。又白羽等は腫瘍転移部より動脈注射により局所に高濃度の薬剤を投与して良好な成績を収めたと報告している。臨床的に使用する場合静脈注射により全身的投与を行うことも必要であるが、腫瘍局所へ高濃度のCPを投与して得る様に動脈注射を行うとか、或は局所に直接注射又は湿布等の方法により高濃度のCPを作用せしめる様にする事が極めて必要である。
II. MA 及び MC

Streptomyces caesitius の産生する抗生物質で 1955
年で(4) により発現され、EHRLICH 猫、吉田肉腫に抗腫
症性を認め、後に Mitomycin A、B、C が分離された。
MA、MC については尾(4) により明治肉腫、EHRLICH
癌舌腹水型腫瘍に MA 0.5mg/kg、MC 2mg/kg を腹
腔内に直接 1 週間連続注射して腫瘍細胞の著減及び延命
効果を認め、又 EHRLICH 皮下結節型に対しても同様 1
週間連続腹腔内投与により腫瘍発育抑制効果を認めてい
る。尾(4) は 2 倍体明治肉腫、4 倍体明治肉腫、武田肉
腫に対する MA、MC の著明な抗腫瘍性を認め、酒井(4)は
EHRLICH 猫の腹水型、皮下結節型、Sarcoma 180 皮
下結節型で CM の著明な抗腫瘍性を認め、更に Walker's
carcinoma の皮下結節型に動脈内投与により著効を認め
ると報告している。私の実験では、MA、MC は吉田肉腫
皮下腫瘍に対して、局所注射の場合に著明な抗腫瘍性を
認め、MA は 10 mcg/g、MC は 100mcg/kg 以上 1
週間連続注射で腫瘍発育抑制、延命効果を認め、更に
MC を腹腔内投与した場合 300mg/kg 1 週間連続注射
で著明な抗腫瘍性を認め、局所注射の 60mcg/kg 1 週
間連続注射より著明な抑制効果を認めた。

CP では腹腔内投与の場合は局所注射に比して皮下腫
瘍発育抑制効果が著明に減少するが、MC の場合は腔内
投与の場合も著明であり、且つ諸家の報告と同様に
結節型腫瘍に効果のある点は注目に値する。

III. RC4

RC4 は化学名 P-phenylenediphosphoric acid tetra-
ethyleimid と云い、マウスに対する LD50 は静注で 215.9
mg/kg、腫腔内注射で 207.3mg/kg である。Sloan
Kettering Institute の Screening test では腹水型腫
瘍は勿論、Sarcoma 180 (solid) には (士)、EHRLICH
carcinoma (solid) に (+)、adenocarcinoma EO 771
に (+) と皮下結節性腫瘍にも著明な抗腫瘍性が報告さ
れている。又 C3H 系マウス乳癌に 40mg/kg 7～20 回
局所注射で、A系マウス乳癌に 40mg/kg 6～12 回局
所注射で著明な抗腫瘍性を示す。佐藤等(4) は吉田肉腫
腹水型に著明な抗腫瘍性を認め、特に 1-thio-3 Azazulene
2 one (Az) との併用により著効を認めるている。

私の実験でも、吉田肉腫皮下腫瘍に対する 10 mg/kg
1 週間連続注射で著明な抑制効果を認め、局所注射の場
合は勿論腹腔内に 2 次的に投与した場合も著明程度に
抗腫瘍性を認めることは MC 同様に注目すべき点と
思われる。又 LD50 207mg/kg である点からして当然ある
が、100 mg/kg 1 週間連続腹腔内投与では注射終了前に
90％以上にラットが死亡するが、50 mg/kg では 1 週間
総計 350mg/kg を注射しても体重減少は認められるが
死亡したものにはなかった。10 mg/kg では死亡例及び体
重減少は認められなかった。

IV. NMO、Sarkomycin、8-Azaguanine、TESPA、
Gancidin

NMO の吉田肉腫皮下腫瘍に対する抗腫瘍性について
探索(8) により 4～7 日目より 1 回量 1～2mg を 2～5
日で総量 4～10mg を皮下注射して著明な延命効果及び
約 50％に腫瘍の完全消滅を認め、安西(6) は果実
肉腫、ヒノノ梅に対して 1mg/kg 連続 1 週間腹腔内注
射を行なって腫瘍発育抑制及び延命効果を認める。なお
海老名(9) は EHRLICH 皮下腫瘍に 50mg/kg 連続 8 日間
腫腔内注射して対照の平均腫瘍重量 2.78 g に対して治
療群 0.71 g と発育抑制効果を認めている。

私の実験にても 5mg/kg 腹腔内、1mg/kg 局所連
続 1 週間注射で注射開始後 8 日目では対照 3.44g に対
し 0.25g、10 日目では対照 6.07g に対し 0.23g、15
日目では対照 13.03g に対し 0.53g と著明な腫瘍発育
抑制効果を認め又局所注射の場合も注射開始後 8 日目で
対照 5.80g に対し 0.31g と抑制効果は著明であった。

Sarkomycin に対し海老名(9) は EHRLICH 皮下腫瘍に
抗腫瘍性を認め、500mg/kg 2 日間、100mg/kg 8 日間
連続腹腔内投与で対照 2.78g に対し 1.76g と、NMO
の 0.71g より重篤であるが腫瘍発育抑制効果を認め
ている。酒井(8) は EHRLICH 皮下腫瘍に対する抗腫瘍性を
検討し、Sarkomycin 3mg、NMO 0.5mg、Azan 0.5
mg、Co4 20mg/kg/マウスとして逆に 10 日間投与した場
合平均腫瘍重量 Sarkomycin 1.26g、NMO 1.74g、
Azan 2.08g、Co4 2.35g で対照群 3.88g にて何
れも抗腫瘍性を認めめるが、Sarkomycin が NMO、Azan,
Co4 等に比べて最も抑制が著明であったと報告してい
る。吉田肉腫の皮下腫瘍を使用した私の実験においては
Sarkomycin は腫腔内投与の場合 150mg/kg では NMO
2.5mg/kg、MC 500mg/kg、TESPA 1.5mg/kg 使用
の場合より腫瘍発育抑制は著明であった。これは腫瘍の
種類により各薬剤の効果が相異するためと思われ、臨床
例に於いても鳥田等により同一腫瘍に於て CP が有効で
Sarkomycin が無効のもの、又その反対に Sarkomycin
が有効で PC が無効のものがあると報告している事と較
べ興味あることである。

8-Azaguanine につき山元(55) は 300mg/kg を吉田肉腫
腹水型に使用して抗腫瘍性を認め、腫腔肝癌により
強い抗腫瘍性を認めており、海老名(6) は 500mg/kg
3 日間、100mg/kg 7 日間連続注射で EHRLICH 皮下腫
瘍に Nitromin、Sarkomycin に比し重篤度ではあるが抗
腫瘍性を認めている。

私の実験では 8-Azaguanine 50mg/kg では NMO
2.5 mg/kg, MC 500 mcg/kg, TESPA 1.5 mg/kg に比し腫瘍発育抑制効果は著しく、TESPA については山口[5]が吉田肉腫腹水型に 1.5 mg/kg 2 回腹腔内投与で最大 15 日まで延命を認め、又山口[5]は吉田肉腫皮下腫瘍につき 1 mg を 4 分割局注で腫瘍発育抑制効果を認めた。

私の実験に於いても TESPA 1.5 mg/kg の使用は CP 2,000 mcg/kg, 8-Azaguanine 50 mcg/kg, Sarkomycin 150 mg/kg、Gancidin 2,000 mcg/kg 使用よりも腫瘍発育抑制効果は著明であった。又 1.0 mg/kg 使用の場合注射後 5 日目で対照の腫瘍平均重量 3.449g に比し 0.37 g、10 日目で対照の 6.07g に比し 0.17g。15 日目対照 13.03g に比し 0.83g と著明な腫瘍発育抑制を認め、又、局所注射の場合に於いても注射開始後 8 日目で対照の 5.80g に比し 1.01g と著明な腫瘍発育抑制を認めた。

Gancidin については川村[29]の報告があり、EHRlich 腹水型に於て 4mg/kg、マウス、8mg/kg マウスの 1週間連続注射で体重増加の抑制と共に延命効果を認め、5mg/kg マウス、8mg/kg マウスの 3日連続注射で腫瘍細胞の著明な減少を認めた。

1 種類の抗癌剤を使用した場合、動物実験でも癌細胞使用の場合でも充分な効果を認め得ないことがあり、更に悪性腫瘍の性質上腫瘍の投与では完全な効果を期待することは不可能で長期の投与が必要である。長期間 1 種類の抗癌剤を使用した場合に耐性の出現を考えさせる場合もあり、又副作用のため必要量の投与不可能な場合もあり、この点から 2 種以上にそれ以上の薬剤を併用することも意味があるものと考える。かかる見地から CP を中心として MC、NMO、TESPA、Sarkomycin、8-Azaguanine、Gancidin 等との併用効果を検討した。然し実際臨床に使用する場合には動物腫瘍と人体の腫瘍では抗癌剤に対する感受性に大きな差異がある事を考慮しなければならない。2 種又はそれ以上の薬剤を併用する方法は 1949 年に SKIPPER[50]が Nitrogen Mustard と Urethane がマウスの Leucemia に用いて併用効果があると報告されてから、WOODSIDE と KELTON[44]は Flavon 60 mg/kg と 8-Azaguanine 50 mcg/kg の併用が Mammary Adenocarcinoma EO 771、Lymphoid Leucemia、Lymphoma II に用いてかなりの成績を得、又 LAW、SKIPPER[50]は 6-Mercaptopurine と Methotrexate の併用実験でも相乗効果を認め、又 HEIDEBERGER[45]（1957）は OPSPA と Azaserine の併用が Sarcoma 180、Flexner-Jobling carcinoma に併用効果を認め、又 OPSPA と 6-Mercaptopurine に著しい併用効果があると報告している。平山[47]は EHRlich 腹水腫を用いて Sarkomycin と CP、Actinomycin J、NMO、8-Azaguanine との併用効果を検討し、Sarkomycin と NMO、Sarkomycin と Actinomycin に移植阻止効果の増強、有系分裂抑制効果の増強を認める。八田[49]等は吉田肉腫腹水型を用いて pro kili NMO 1 mg、Sarkomycin 200 mcg、8-Azaguanine 50 mcg、TEM 0.1 mg の投与量にて、NMO と 8-Azaguanine、NMO と TEM 併用群に著明な併用効果、NMO と Sarkomycin では著明に併用効果を認めた。然し 606 類腹腫肝臓に対し同様の実験量投与実験に於いても併用効果を認めたもののはなかった。酒井[49]は MC を中心として NMO、CP、Azan、Sarkomycin、TESPA の併用効果を EHRlich 腹水腫を用いて検討し、MC と CP、Sarkomycin、TESPA 併用の場合はやや延命効果を認め、特に MC と Sarkomycin 併用時には最も効果を得たと述べている。亀山等[49]は臨床的応用に於て NMO と Sarkomycin に協力作用のあることを報告している。

私は CP を中心として NMO、MC、Sarkomycin、TESPA、8-Azaguanine、Gancidin との併用効果を検討したが、私の使用した吉田肉腫皮下腫瘍に対し、私の実験が投与量、即ち pro kili CP 2,000 u、400 u、MC 500 mcg、100 mcg、NMO 2.5 mg、0.5 mg、8-Azaguanine 50 mg、10 mg、Sarkomycin 150 mg、30 mg、TESPA 1.5 mg、0.3 mg、Gancidin 2,000 mcg、400 mcg の投与量では CP との併用療法にて推計学上有意の差で有効と認められたものではなかった。更に CP と MC の併用効果について腫瘍局所注射にて 1日投与量 pro kili CP 500 u+MC 100 mcg、CP 500 u+MC 10 mcg、CP 250 u+MC 100 mcg、CP 250 u+MC 10 mcg について検討したが、この場合何れも実験動物の約 50% に腫瘍消滅を認め、CP、MC の単独局所投与実験に比較して抑制効果が優れている。又 CP と MC、NMO、TESPA との併用効果を検討したが、腫瘍内投与の場合は CP 1,500 u/kg に NMO 5 mg/kg を併用すると注射開始後 5 日目では CP+NMO の平均腫瘍重量 0.18 g は CP 単独の 1.73 g、NMO 単独の 0.25 g に比し抑制著明であり、又注射開始後 10 日目では CP+NMO の平均腫瘍重量 0.13 g は CP 単独 3.30 g、NMO 単独の 0.23 g に比し抑制著明であり、又注射開始後 15 日目 CP+NMO の平均腫瘍重量 0.33 g は NMO 単独の 0.53 g、又 CP は 3 例共死亡して腫瘍重量測定不能に比し腫瘍発育抑制が著明であった。又局所使用の場合は CP 300 u/kg に MC 60 mcg/kg、TESPA 0.2 mg/kg を併用すると注射開始後 5 日目では CP+MC の平均腫瘍重量 1.03 g は CP 単独の 1.10 g、MC 単独の 1.35 g に比し発育抑制著明であり、又 CP+TESPA の平均腫瘍重量 0.77 g は CP 単独の 1.10 g、TESPA 単独の
1.019') qx 'J' F'ç'œ} "'å"'±'R'µ‰½'ê'̏ê

2) Mitomycin C の吉田肉腫皮下腫瘍に対する抗癌性を検討した所、MA、MC 共に腫瘍局所注射の場合著明な腫瘍発育抑制効果、延命効果を認め、又 MC は腹腔内注射の場合でも著明な抗癌性を認めた。

3) RC₄ の吉田肉腫皮下腫瘍に対する抗癌性を検討した所、局所注射、腹腔内注射等の場合も著明な腫瘍発育抑制効果を認めた。

4) CP、MC、NMO、TESPA、Sarkomycin、8-Azaguanine、Gancidin の腹腔内注射による吉田肉腫皮下腫瘍に対する腫瘍発育抑制効果を推計学的に検討した所、MC、NMO、TESPA が他の薬剤に比し有意の差で抑制効果著明であった。又 CP を中心とした他の薬剤との併用効果では推計学上有意の差で有効と認めたものはないかった。

5) CP、MC、NMO、TESPA の単独及び CP を中心とした併用療法による腫瘍発育抑制効果を検討した所、単独使用では腹腔内、局所注射共に NMO が最も抑制著明で、併用使用では腹腔内注射では CP+NMO、CP+TESPA が、局所使用では CP+MC、CP+TESPA が各単独使用の場合よりやや抑制著明であった。

6) 實験動物の肺重量百分率を検討した所、吉田肉腫皮下移植腫瘍は正常腫瘍に比し明らかに肺の肥大を認め、又治療群では腫瘍腫瘍の肺より細小を認めた。特に RC₄ 治療群では肺の細小が著明で、正常腫瘍の肺より細小を認めた。

7) 治療群の吉田肉腫皮下腫瘍組織は発育抑制効果著明の場合程、腫瘍組織の限局性及びビミン性壊死が著明で、腫瘍細胞の数は高度であった。実験動物の肝、腎、脾の病理所見は一般に著変を認めないものが多いため、一部に肝の血管充盈、腎皮質、臓器の血管充盈、腫瘍の萎縮、細胞性の傾向を認めた。

摘 要 に於て、末の御指導をいただいた石井良治講師及び病理組織学的検査に御協力をいただいた佐藤健次郎博士に厚く御礼を申し述べる。なお、北研 科博士、並びに協和醸酵株式会社の御援助を深謝する。

文献
13) Ravina : La Presse Medicale, 61 (63), 1270~1273, 1953.