EFFECT OF N1,N1-ANHYDROBIS-(β-HYDROXYETHYL) BIGUANIDE HYDROCHLORIDE (ABOB) AGAINST ADENO VIRUS

MASARO KAJI, SEIJI KAMIYA, EIJI TATEWAKI, ZITSURO NAGAFUCHI AND NOBORU FUJWARA

The First Department of Internal Medicine, Faculty of Medicine
Kyushu University, Fukuoka, Japan

(Received April 9, 1965)

Many papers report the inhibitory effect of N1,N1-anhydrobis-(β-hydroxyethyl) biguanide hydrochloride (ABOB) on influenza virus multiplication and its prophylactic and therapeutic evaluation in clinical trials. For the other viruses only few studies were made to test its antiviral activity. This paper reports the effect of ABOB against adenovirus multiplication in HeLa cells.

Materials and Methods

Virus

Adenovirus type 3, Koito strain* and type 8, Kanehisa strain† were used in the study. Both strains were propagated in HeLa cell cultures.

Tissue Culture

HeLa cells were employed throughout this study. Method of culture and virus inoculation were previously described²).

Infectivity Titration

Specimens were made in serial tenfold dilution and 0.1 ml of each dilution was inoculated into a HeLa cell culture. Two culture tubes were used for each dilution. A tube was considered to be infected when at least 20 per cent of the cells showed viral cytopathic effect 12 days after inoculation. The 50 per cent endpoint was calculated by the REED and MUENCK's method³).

Complement Fixation Test

Titration of complement fixing (CF) titer of the fluid were carried out using rabbit antisera against adenovirus types 3 and 8. The fluid to be tested were heated at 56°C for 30 minutes and then clarified by centrifugation at 1,500 rpm for 10 minutes. 0.2 ml of serial 2-fold dilution of antigen, 0.2 ml of complement (2 units) and 0.2 ml of immune rabbit serum (4 units) were mixed and incubated at 37°C for an hour. After the incubation 0.3 ml of 3 per cent sheep erythrocytes sensitized with an equal volume of hemolysin (2 units) was added and the mixture was incubated at 37°C for 30 minutes before the tubes were read. The highest dilution of the fluid which resulted in a complete complement fixation was considered to be the antigen titer.

Results

Viability of HeLa Cells Treated with ABOB

HeLa cells were treated with various concentrations of ABOB which were added to culture media and its viability was examined by eosin exclusion test for 7 days after the treatment. The percentages of living cells treated with 1.0 mg/ml or less concentrations of ABOB were 80 to 90 per cent of that of untreated HeLa cells during the period observed (Fig. 1). Treatment of 2.5 mg/ml ABOB, however, brought a remarkable cell damage after 7 days. Accordingly, 0.5 and 1.0 mg/ml of ABOB...
were used throughout the experiment.

Contact Effect of ABOB on Adenovirus

Adenovirus type 8 was used for the test. ABOB was added to infected culture fluid with Kanchisa strain (10^4.2 TCD_{50}/ml) to give the final concentration of 2.0 mg/ml. Infectivity titration of the mixture was done after it was kept at room temperature for 24 hours. No significant changes of infectivity titer between ABOB-treated virus and control virus were demonstrated.

Effect of ABOB on Adenovirus in HeLa Cells

As shown in Fig. 2, when HeLa cells were inoculated with 10^4 TCD_{50}/ml of type 3 adenovirus, time of onset and development of cytopathic effect (CPE) at a concentration of 0.5 mg/ml of ABOB were nearly similar to the virus control. At a concentration of 1.0 mg/ml of ABOB, however, apparently lesser CPE was observed than the control.

Infectivity and CF antigen titers were lower than the control under the presence of ABOB 0.5 or 1.0 mg/ml.

After inoculation with 10^4.1 TCD_{50}/ml of type 8 adenovirus, CPE (in the early stage), infectivity titer, HA titer and CF antigen titer were lower than those of the control.

The degree of decrease is more marked in 1.0 mg/ml of ABOB than in 0.5mg/ml (Fig. 3). When inoculated with smaller doses (10^4.4 TCD_{50}/ml) of type 8 virus (Fig. 4), production of HA and CF antigen was apparently inhibited in ABOB-treated HeLa cells. As regards to CPE, 150 hours after virus inoculation more remarkable CPE was observed at 1.0 mg/ml of ABOB than in the control perhaps because of cell degeneration due to ABOB itself, not to virus infection.

The correlation of initiation of ABOB treatment to inhibition of virus multiplication was studied. Treatment of ABOB was started 24 hours before, at the time of inoculation and 24 hours after virus inoculation. In HeLa cell infected with type 8 virus (10^4.4 TCD_{50}/ml) HA and CF titer was lower in the presence of ABOB of 0.5 mg/ml in any onset of treatment than the control. CPE appeared at lower level only in the case of ABOB treatment 24 hours before virus inoculation (Fig. 5).

At the concentration of 1.0 mg/ml of ABOB, less CPE was observed irrespective of the time of onset of ABOB treatment than in the control. HA and CF antigen productions were apparently inhibited than in the control. The degree of inhibition is more marked in the case of 1.0 mg/ml when compared with that of 0.5 mg/ml (Fig. 6).

In general, the earlier beginning of ABOB treatment tended to bring the stronger inhibition of
The study was carried out to know whether ABOB can inhibit the adenovirus multiplication or not. HeLa cell could be used under the concentration of 1.0 mg/ml or less of ABOB for this experiments. The results obtained suggest that adenovirus multiplication in HeLa cell was inhibited by the treatment of ABOB with the concentration of 1.0 or 0.5 mg/ml to the culture media, although no direct virucidal effects were demonstrated in vitro.

The beginning of treatment of HeLa cell with ABOB was earlier, inhibitory effect of multiplication was stronger.

The mechanism of antiviral activity of ABOB remains to be studied.

References

Discussion and Summary

A control study with sulfisomoxole was made using type 8 adenovirus. Viability of HeLa cells in different concentrations of sulfisomoxole was tested (Fig. 7). No inhibitory effects on CPE and infectivity titer were observed (Fig. 8).

The study was carried out to know whether ABOB can inhibit the adenovirus multiplication or not. HeLa cell could be used under the concentration of 1.0 mg/ml or less of ABOB for this experiments.

The results obtained suggest that adenovirus multiplication in HeLa cell was inhibited by the treatment of ABOB with the concentration of 1.0 or 0.5 mg/ml to the culture media, although no direct virucidal effects were demonstrated in vitro.

The beginning of treatment of HeLa cell with ABOB was earlier, inhibitory effect of multiplication was stronger.

The mechanism of antiviral activity of ABOB remains to be studied.

References