Pipemidic acid の毒性学的研究 第4報 サルにおける亜急性毒性試験

仙田博美・矢寺成次・藤本勝造・大西久美雄・辰巳 熙 大日本製薬株式会社総合研究所

Pipemidic acid の毒性試験の一環として、その亜急 性毒性をサルを用いて検討した。

実 験 方 法

1. 実験動物および飼育条件

東南アジア産の推定年齢 $2.5 \sim 4$ 才,体重 $3.2 \sim 4.2$ kg のアカゲザル Macaca mulatta を用い, 輸入検疫後,約5週間予備飼育してから実験を開始した。飼育は個別ケージ $(80 \times 80 \times 80 \text{ cm})$ に収容して行ない, 飼料(オリエンタル酵母製サル用固型飼料 AB 150 g/day とりんご1日1個)と水道水を与えた。

2. 投与方法および実験群

検体 Pipemidic acid trihydrate は 0.5%トラガント水溶液に懸濁し、投与液量を体重 1 kg, 1 日あたり4 ml となるように濃度を調整した。投薬は1日量を2分して午前9時と午後5時に経鼻胃内投与した。実験群は対照群と Pipemidic acid の 100, 400 および 1,600 mg/kg/day (いずれも無水物換算量) 投与群で、各群の動物数は雄2, 雌1,合計3頭とし、投薬期間は30日とした。なお、この投与量は尿路感染症に対する本剤の臨床推定用量を 20 mg/kg/day としたときの5, 20 および 80 倍量に相当する。

3. 検査項目

a. 一般症状および体重

サルの行動, 嘔吐性, 摂餌量, 糞便の性状などは毎日 注意して観察し, 体重は毎週2回測定した。

b. 尿検査

投薬開始前1週と投薬第1および第3週目にモンキーチェアを用いて、雄ザルから24時間尿を採取し、尿量、 尿蛋白、尿糖、電解質、潜血反応、pH などの検討を行なった。

c. 血液生化学検査

前腕正中皮静脈からヘパリン処理下に採血してその血漿を分析した。採血は投薬開始前 15 および 7 日,投薬開始後 7,18 および 29 日に行ない,オートアナライザーを用いて,血糖, Ca^{++} ,無機燐,尿素窒素,クレアチニン,総コレステロール,総蛋白,アルブミン,総ビリルビン,LDH,GOT,GPT, Na^+ , K^+ および CI^- を測定した。

d. 血液学的検査

血液生化学分析用の血液の一部を用いて赤血球数および白血球数(トーア・ミクロセルカウンター), 血色素量(シアンメトヘモグロビン法), ヘマトクリット値(毛細管法) および白血球百分比(塗抹法)を測定した。

e. 剖検ならびに病理組織学的検査

ペントバルビタール麻酔下に放血致死させ、外景および内景を精査し、主な臓器の重量を測定した。病理組織学的検査はパラフィン切片、ヘマトキシリン・エオジン染色標本を用いて以下の臓器について実施した。

大脳皮質と間脳(視交叉を通る横断),延髄と小脳(菱形体を通る横断),脊髄(胸髄第1節),腋窩部の神経束,視神経,眼球,蝸牛縦断面,気管,肺(左右中葉),心(左右の心耳と心室,心室中隔),動脈(動脈弓,腹部大動脈および腋窩部),舌,顎下腺,食道,胃(胃底腺部および幽門腺部),十二指腸,空腸,回腸,盲腸,結腸,直腸,肝(外側左葉,右葉および胆のうを含めた内側右葉),膵,脾,腎(左右),膀胱,精巣,卵巣,精のう,子宮,下垂体,甲状腺,副腎,胸腺,リンパ節(顎下,後縦隔,腸間膜および浅鼠径),骨髄(大腿骨)および骨格筋(大腿部)。

実 験 成 績

1. 一般症状および体重

サルの挙動, 摂餌量, 飲水量などに対する影響はなく, 嘔吐性も認められなかった。

体重に対する影響も全く認められなかった (Fig. 1)。

2. 尿所見

測定項目のうち、尿量、尿蛋白、pH および潜血反応の所見は Table 1 に示すとおりである。尿蛋白量が検体投薬群で投薬開始後、明らかに増加したが、これは尿中に排泄された Pipemidic acid の未変化体が LOWRY 法による尿蛋白測定時に pseudo-reaction を起こしたことによるものであった。その他の測定項目に異常は認められなかった。

3. 血液生化学所見

総コレステロールの軽度の減少が 1,600 mg/kg 群の 7日目および18日目の検査で認められた。その他の項目においても経日的に変動のみられるものがあったが、薬

物によると思われる特異な変化はなかった(Table 2)。

- 4. 血液学的所見 いずれの測定値にも対照群 と投薬群との間に大差はなか った。
 - 5. 剖検ならびに病理組織 学的所見

臓器重量では投薬群で肝の 実重量と体重比の軽度増大が みられたが、dose response はなかった。肺重量の増大が 12 例中 4 例 (No. 3, 10, 6, 8) に認められたが、これは誤嚥 性肺炎によるものであった。 その他の臓器重量に薬物によ ると思われる異常はなかった (Table 3)。

剖検時の肉眼的所見および 病理組織学的所見では上述の 誤嚥性肺炎のほか,腸結節虫 の寄生によるリンパ組織の反 応性変化などが数例にみられ たが,本剤の投与によると思 われる systemic な変化はい ずれの臓器にも認められなか った。

Fig. 1 Body weight changes in each monkey treated with pipemidic acid for 1 month

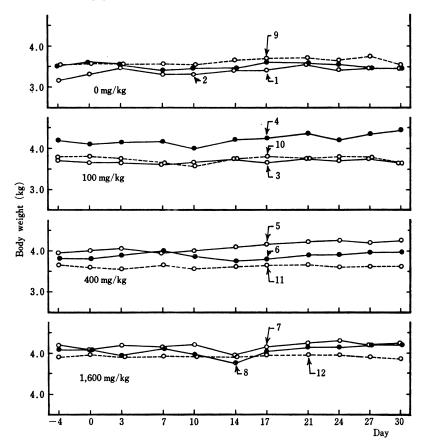


Table 1 Urine analysis in monkeys treated with pipemidic acid for 1 month

Dose (mg/kg)	Mon No.	nkey	Urine volume (ml/24 h)			Urine protein ^{a)} (mg/24 h)			pH ^{b)}			Hemoglobinuria c)		
		Sex		Week		Week			Week			Week		
			-1	1	3	-1	1	3	-1	1	3	-1	1	3
$0 \qquad \begin{array}{c} 1 \\ 2 \end{array}$	1	M	50	58	71	25	20	18	8.6	8. 4	8.6	+	+	+
	2	M	226	194	140	11	39	21	6.9	7.4	6.8	-		-
100	3	M	67	167	260	20	50	52	6.9	6.2	6.6	_	_	_
100	4	M	182	176	262	27	88	52	7.3	6.4	7.2	_	_	-
400	5	M	69	70	102	24	56	61	7.3	6.4	7.2	_	_	_
400	6	M	106	62	158	26	68	47	7. 5	5.2	7.8	_	#	_
1 000	7	M	94	146	138	9	73	55	5.8	6. 4	7. 2	_		
1,600	8	M	66	130	193	20	78	77	7.0	5.2	7.0	_		

a) Pseudo-reaction of urine protein was observed by means of LOWRY's method in the presence of pipemidic acid excreted into urine.

b) by test paper

c) by test paper (Hemastix)

Table 2 Blood biochemical analysis in monkeys treated with pipemidic acid for 1 month (1)

Dose	Mon	key	-15	-7	Day 7	18	29	-15	-7	Day 7	18	29	
(mg/kg)	No.	Sex			ose (mg			-13		++ (mg/			
0	$\frac{1}{2}$	M M	108 104	76 75	77 84	75 80	93 87	10.3 10.4	10.5 10.0	10.3 9.5	9. 8 9. 5	9. 9 9. 8	
U	9	F	113	82	84	80	83	10.4	10.3	10.1	10.1	10.1	
	mean		108	78	82	78	88	10.2	10.3	10.0	9.8	9.9	
	3	M	102	77	82	92	80	10.5	10.5	9.9	9.7	10.4	
100	$\frac{4}{10}$	M F	104 114	65 76	82	80 75	67 78	10. 5 10. 2	10.7 10.9	10.1	10.5 10.7	10. 5 10. 0	
	mean	•	107	73	82	82	75	10. 4	10.7	10.1	10. 7	10.3	
	5	M	93	77	74	86	77	10. 4	10.2	10. 2	10. 1	9. 7	
400	6	M	91	83	78	66	75	10. 4	10. 5	10.2	10. 2	9.5	
	11	F	155	100	97	94	105	10.4	10.0	10.4	10.8	10.1	
	mean		113	87	83	82	86	10.3	10.2	10.3	10. 4	9.8	
1,600	7 8	M	80 100	78 93	78 65	85 75	72 82	10.4	11.1	10.2	10.8	10.4	
1,000	12	M F	111	93 78	83	73 84	88	9.8 10.2	9.7 10.2	9. 6 9. 8	10. 2 9. 8	9. 9 9. 7	
	mean		97	83	75	81	81	10.1	10.4	9.9	10.3	10.1	
	Urea N (mg%)							Т	otal cho	olestero	l (mg%	()	
	1	M	23	23	21	20	17	218	200	207	200	208	
0	2 9	M F	21.5	21 20. 5	16	18.5	22 21	227	196	202	210	215	
	mean	г	22 22	20. 3	21 19	22 20	20	171 205	182 193	176 195	170 1 93	185 203	
	3		26	22	21	20	21						
100	3 4	M M	19	18	<u></u>	20 13	14	217 216	235 203	209	188 210	233 215	
	10	F	25	18	19.5	16.5	23	218	250	188	2 15	210	
	mean		23	19	20	17	19	217	229	199	204	219	
400	5	M	25	28	17	14	16.5	206	200	185	175	178	
400	6 11	M F	25 21	19 14	16 17. 5	15 14	15 16. 5	205 216	193 246	189 221	165 230	200 237	
	mean		24	20	17	14	16	209	213	198	190	205	
	7	M	23. 5	18	12	13	14.5	231	218	182	198	210	
1,600	8 12	M F	21 23	36 20	17 18	21 18	20 17	212 190	197 208	160	165	205 195	
	mean	•	23	25	16	17	17	211	208	178 173	175 175	203	
		**************************************			 Γ (mU/1			GPT (KU)					
	1	M	37	88	35	36	37	15	21			10	
0	2	M	40	47	38	48	46	15 8	8	30 21	16 16	19 14	
	9	F	63	63	48	61	60	12	11	16	15	21	
	mean		47	66	40	48	48	12	13	22	16	18	
100	3 4	M M	40 50	72 52	54	51 47	46 47	20 22	22 29		26	22	
100	10	F	52	53	7 2	65	54	18	29 18	30		24 16	
	mean		47	59	63	54	49	20	23	30	25	21	
	5	M	58	52	66	46	46	19	46	25	23	21	
400	6 11	M F	53 35	77 30	70 52	57 43	68 47	18 8	28 7	37 17	29 20	37	
	mean	•	49	53	63	43 49	54	15	27	26	20 24	20 26	
	7	M	60	42	53	43	45	22	18	27			
1,600	8	M	43	77	48	48	43	19	21	27 29	24 22	18 24	
	12	F	58	63	62	65 50	63	27	20	42	35	38	
	mean		54	61	54	52	51	23	20	33	27	27	

Table 2 Blood biochemical analysis in monkeys treated with pipemidic acid for 1 month (2)

Dose	Mon	key	-15	-7	Day 7	18	29	-15		Day 7	18	29			
(mg/kg)	No.	Sex		norgan	ic P (m	g% P)		(Creatini	ine (ma	(mg%)				
0	1 2 9 mean	M M F	4. 4 3. 4 4. 8 4. 2	4. 4 3. 2 7. 8 5. 2	6. 1 5. 1 6. 3 5. 8	5. 2 5. 1 5. 6 5. 3	4. 9 5. 0 6. 5 5. 5	0.85 0.6 0.8 0.8	0. 7 0. 75 1. 1 0. 9	0. 85 0. 65 0. 9 0. 8	0.8 0.65 0.9 0.8	0.7 0.6 0.8 0.7			
100	3 4 10 mean	M M F	4. 5 5. 2 5. 6 5. 1	6. 4 6. 3 8. 5 7. 1	6. 0 4. 7 5. 4	3. 4 4. 6 5. 3 4. 4	4. 1 4. 5 5. 3 4. 6	0.7 0.7 0.8 0.7	0.6 0.65 1.0 0.8	0.75 	0.8 0.7 0.9 0.8	0.9 0.6 0.8 0.8			
400	5 6 11 mean	M M F	5. 2 5. 3 4. 3 4. 9	6.7 5.0 7.0 6.2	3.5 4.6 3.8 4.0	4.3 4.2 4.9 4.5	4. 0 4. 8 4. 4 4. 4	0.85 0.9 0.75	0.75 0.8 0.8 0.8	0. 7 0. 9 0. 75 0. 8	0.7 0.9 0.8 0.8	0. 7 0. 8 0. 65 0. 7			
1,600	7 8 12 mean	M M F	4. 2 6. 3 5. 9 5. 5	5. 7 7. 8 5. 9 6. 5	4. 5 4. 1 6. 0 4. 9	4. 4 4. 9 5. 4 4. 9	5. 2 5. 8 6. 0 5. 7	0.7 0.8 0.8 0.8	0.9 0.75 0.7 0.8	0.9 0.9 0.8 0.9	1.0 1.0 0.8 0.9	0. 9 0. 85 0. 65 0. 8			
				Total p	orotein ((g%)			Albun	nin (g9	6)				
0	1 2 9	M M F	8. 15 8. 6 8. 2	7. 85 8. 5	8.45	8. 0 8. 15 9. 1	7. 7 7. 8 8. 4	4.8 4.35 4.55	4.9 4.2 4.6	4. 2 3. 85 4. 45	4.0 3.95 4.3	4. 3 4. 6 4. 65			
100	3 4 10 mean	M M F	8.3 8.15 9.2 8.1 8.5	8. 2 8. 8 8. 9 8. 4 8. 7	8.1 8.1 7.9 8.0	7. 8 8. 5 8. 2 8. 2	8. 0 8. 3 8. 05 7. 3 7. 9	4. 6 4. 4 4. 6 4. 55 4. 5	4. 6 4. 5 4. 95 4. 9 4. 8	4. 2 4. 45 4. 95 4. 7	4. 1 4. 05 4. 6 4. 7 4. 6	4.5 4.3 4.9 4.6 4.6			
400	5 6 11 mean	M M F	7.95 7.9 8.0 8.0		7.9	7. 9 8. 7 8. 9 8. 5	7. 6 7. 7 7. 85 7. 7	4. 8 4. 3 4. 45 4. 5	3. 9 4. 4 4. 95 4. 4	4. 85 4. 15 5. 1 4. 7	4. 5 3. 35 5. 15 4. 3	4. 4 3. 45 4. 8 4. 2			
1,600	7 8 12 mean	M M F	8. 6 7. 9 8. 35 8. 3	8.9 8.1 8.9 8.6	7.9 7.35 7.9 7.7	8. 05 8. 5 8. 6 8. 4	7.95 7.95 7.9 7.9	4. 8 4. 85 4. 3 4. 7	5. 1 4. 7 4. 4 4. 7	4. 4 3. 85 4. 05 4. 1	4. 7 4. 15 4. 4 4. 4	4.75 4.6 4.2 4.5			
		-		Nat	(mEq/	1)		K+ (mEq/l)							
0	1 2 9 mean	M M F	147 144 148 146	152 148 152 151	145 144 146 145		145 147 — 146	3. 5 3. 7 4. 2 3. 8	4. 2 3. 7 4. 3 4. 1	4. 1 3. 7 4. 2 4. 0		3. 6 4. 0 — 3. 8			
100	3 4 10 mean	M M F	143 143 148 145	147 152 153 151	146 146		147 147	4. 2 3. 8 4. 0 4. 0	4. 6 5. 0 5. 6 5. 1	3.8 3.8		3. 6 3. 6			
400	5 6 11 mean	M M F	148 147 147 147	150 147 149	146 149 145 147		149 149 144 147	3. 8 3. 6 3. 7 3. 7	4. 7 3. 7 4. 2	3. 9 3. 7 3. 4 3. 7		3. 7 4. 0 3. 6 3. 8			
1,600	7 8 12 mean	M M F	145 147 149 147	150 151 150 150	145 147 145 146		149 — 147 148	4. 2 4. 9 4. 4 4. 5	4. 6 3. 3 3. 3 3. 7	3. 3 3. 9 3. 8 3. 7		4.3 4.6 4.5			

Table 3	Organ	weights in	n monkevs	treated	with	pipemidic	acid	for 1	l month
1 able 5	Oigan	MCIRILIO II	T INOUNE AP	ueateu	AA T L T I	procmidic	aciu	IUI .	

Dose (mg/kg)	Moi No.	nkey Sex	Final body weight	Brain	Heart	Lung	Liver	Kid right	ney left	Spleen	Pancrea
(IIIg/ Ng)	110.	- CCA	(kg)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)
0	1 2 9	M M F	3. 45 3. 45 3. 55	85. 3 77. 2 85. 3	12.5 14.2 13.9	25.8 23.2 21.0	87.5 79.7 74.7	7. 9 8. 6 7. 4	7.7 8.9 7.5	4. 76 2. 92 4. 92	7.4 11.4 7.2
	mean		3. 48	82.6	13.5	23.3	80.6	8.0	8.0	4.20	8.7
100	3 4 10 mean	M M F	3. 65 4. 45 3. 65 3. 92	95. 0 94. 7 79. 8 89. 8	15. 2 18. 4 14. 1 15. 9	54.9% 26.5 51.9% 44.4	99. 8 115. 0 101. 0 105. 3	7. 9 10. 7 7. 1 8. 6	8. 6 10. 9 6. 9 8. 8	5. 50 5. 47 4. 08 5. 02	5. 7 6. 4 5. 5 5. 9
400	5 6 11 mean	M M F	4. 25 3. 95 3. 60 3. 93	95. 7 88. 5 81. 1 88. 4	22. 0 16. 5 15. 6 18. 0	24. 6 34. 4* 23. 1 27. 4	114. 0 105. 0 118. 0 112. 3	10.1 8.3 7.5 8.6	10. 4 8. 2 7. 4 8. 7	3. 92 3. 63 4. 20 3. 92	7. 0 7. 7 8. 4 7. 7
1,600	7 8 12 mean	M M F	4. 25 4. 20 3. 85 4. 10	92. 2 96. 5 85. 8 91. 5	15. 6 18. 3 17. 5 17. 1	22. 3 37. 2** 24. 3 27. 9	114. 0 118. 0 97. 6 109. 9	8. 5 9. 2 7. 7 8. 5	8.3 8.7 7.8 8.3	3. 79 2. 85 6. 74 4. 46	8. 4 8. 9 7. 9 8. 4
Dose (mg/kg)		nkey Sex	Pituitary (mg)	and the second of the second o					Seminal vesicle (g)	Ovary (g)	Submandibular gland (g)
0	1 2 9 mean	M M F	55 51 47 51	1.50 0.46 0.56 0.84	4. 82 5. 03 4. 93	0. 52 0. 56 0. 50 0. 53	1. 86 1. 03 1. 45	0. 70 0. 55 0. 63	1. 28 0. 25 0. 77	0.21	3. 91 2. 20 2. 89 3. 00
100	3 4 10 mean	M M F	54 69 61 61	0. 48 0. 40 0. 62 0. 50	2. 53 3. 74 2. 47 2. 91	0. 68 0. 98 0. 65 0. 77	1. 49 2. 65 2. 07	0. 42 0. 85 0. 64	0. 96 3. 86 2. 41	0. 22	2. 36 2. 96 2. 50 2. 49
400	5 6 11 mean	M M F	63 61 47 57	0.57 0.42 0.61 0.53	3.70 1.49 2.85 2.68	0. 82 0. 53 0. 61 0. 65	1. 69 1. 09 1. 39	0. 48 0. 51 0. 50	0.96 1.23 1.10	0. 22	3. 19 2. 40 2. 64 2. 74
1,600	7 8 12 mean	M M F	32 58 72 54	0. 38 0. 50 0. 60 0. 49	3. 92 6. 44 5. 54 5. 30	0. 79 0. 52 0. 43 0. 58	1. 27 1. 90 / 1. 59	0. 54 0. 98 0. 76	0. 67 1. 02 0. 85	0. 46	2. 52 4. 17 3. 24 3. 31

* Pneumonia

総括ならびに考察

アカゲザルに Pipemidic acid の 100, 400 および 1,600 mg/kg/day (1日2回に分服) を1カ月間, 経鼻胃内投与して, その亜急性毒性を検討した。

その結果、一般症状、体重および尿所見に異常はなかった。1,600 mg/kg 投薬群における変化として肝重量の軽度増加と総コレステロールの軽度減少が認められた。しかしながら、肝重量の増加に dose response がないこと、血中の GOT、GPT 活性に異常はなく、また病理組織学的にも肝に特異的障害像は認められなかったことから病的意義はないと考えられる。その他の血液学的所見、血液生化学所見、剖検ならびに病理組織学的所見に本剤の投与に起因すると思われる変化はなかった。

本剤のラット¹² およびイヌ²⁰ における亜急性ならびに 慢性毒性試験では本剤投与によると思われる重篤な変化 はなんら認められない事実と今回の実験成績から、本剤 の毒性には種族差がなく、またいずれの種族においても その毒性はきわめて低いと考えられる。これらは本剤を ヒトに適用した場合においてもその毒性の低いことを予 測させるものである。

稿を終わるにあたって,本実験遂行に終始協力された 中野幸穂,深川清二,殿井哲史,近藤澄子の諸氏に深謝 します。

(本研究期間は昭和48年1月から同年6月である。)

女 萬

1) 仙田博美,藤本勝造,矢寺成次,大西久美雄,辰

巴 熙: Pipemidic acid の毒性学的研究, 第2報, ラットにおける亜急性ならびに慢性毒性試験。Chemotherapy 23 (9): 2740~2747, 1975

2) 仙田博美, 松岡信男, 矢寺成次, 藤本勝造, 大西

久美雄, 辰巳 熙: Pipemidic acid の毒性学的 研究,第3報,イヌにおける亜急性ならびに慢性毒 性試験。 Chemotherapy 23 (9): 2748~2764, 1975

TOXICOLOGICAL STUDIES ON PIPEMIDIC ACID IV. SUBACUTE TOXICITY STUDIES IN MONKEYS

HIROMI SENDA, SEIJI YATERA, SHOZO FUJIMOTO,

KUMIO OHNISHI and HIROSHI TATSUMI

Research and Development Division, Dainippon Pharmaceutical Co., Ltd.

Pipemidic acid (PPA) was orally administered to male and female monkeys twice a day at doses of 100, 400 and 1,600 mg/kg/day for 1 month.

Abnormalities possibly due to PPA were not observed with regard to body weight gain, appearance, hematological analyses and biochemical analyses of plasma and urine, except for a slight increase in liver weight and a slight descent in the plasma total cholesterol level in the group of 1,600 mg/kg/day. The increase in liver weight was not dose-related nor was it accompanied by abnormalities in plasma glutamic oxaloacetic transaminase and glutamic pyruvic transaminase levels, and histopathologic changes of liver.

PPA seems to have little toxic effect upon monkeys by the oral route.