T-1982 の毒性試験(第4報)

――カニクイザル3カ月間筋肉内投与亜急性毒性試験――

河村泰仁·永井章夫·柴田哲夫 佐藤 盛·中川重仁·稲場淳子 米田豊昭·高井 明 富山化学工業株式会社綜合研究所

T-1982のカニクイザル 3 カ月間筋肉内投与亜急性毒性試験と回復試験を, 20頭のサルを使用し, 100, 200, 400 mg/kg/day 投与群と生理食塩水投与対照群を設定して行ない,次の結果を得た。

- 1) 死亡例はなく,発育,尿検査,血液検査結果に異常が認められなかった。
- 2) 投与期間中に軟便の排泄が、ほぼ投与量に比例して断続的に観察されたが、休薬と同時に回復した。
- 3) 血液化学検査では,血清のセルロースアセテート膜電気泳動で,陽極側に易動度の速いアルブミン分画が投与量に比例して認められたが,可逆的な変化であった。
 - 4) 400 mg/kg/day 投与群の注射部位筋肉に、対照群よりも若干強い筋障害が認められた。
 - 5) 剖検所見、組織学的検査では、薬剤投与に起因すると思われる異常が認められなかった。
 - 6) 本試験における最大安全量は,200 mg/kg/day と推定された。

T-1982 は、幅広い抗菌力を有する新規セファマイシン系抗生物質である。そのラット、マウス、イヌに対する急性毒性試験^D、ラット^Dおよびイヌ^Sでの亜急性毒性 試験結果についてはすでに報告されている。今回さらにカニクイザルを用いて3カ月間の筋肉内投与による亜急性毒性試験を行なったので、結果を報告する。

I. 実験材料および方法

1) 被験検体

T-1982 は下記の化学名と化学構造を有する白色の粉末であり、水、メタノールに溶けやすく、エタノール、アセトンには溶けにくく、酢酸エチル、エチルエーテル、ヘキサン、ベンゼンにはほとんど溶けない。本試験には「富山化学工業㈱製造のロット W 0726 を使用した。

Fig. 1 Chemical structure of T-1982

Sodium 7β -((2R, 3S)-2-(4-ethyl-2, 3-dioxo-1-piperazinecarboxamido)-3-hydroxybutanamido)-7 α -methoxy-3-((1-methyl-1H-tetrazol-5-yl)thiomethyl)-3-cephem-4-carboxylate

2) 使用動物

Indonesia で捕獲され、日本クレア㈱を通じて輸入されたカニクイザル($Macaca\ fascicularis$)20頭(雄10、雌10)を使用した。国内で3~8カ月間の検疫期間中ツベルクリン反応、赤痢、サルモネラの検査を行ない、さらに当研究所で約1カ月間の馴化検疫期間中ツベルクリン反応、血液検査、血液化学検査を行なって試験の遂行に支障のないことを確認した。動物飼育室は温度25±2℃、湿度55±10%、6:00~18:00の12時間人工照明を行ない、飼料は日本クレア㈱の CMK-1を1日120gとサツマイモあるいはリンゴ約100gを隔日に与えた。動物は、ステンレス製の狭体装置付壁掛式個別ケージに1匹ずつ収容した。投与開始時のサルの体重は雄3.04~5.02 kg、雌2、33~3.44 kg であり、歯式からの推定年齢は雄2~7.7歳、雌3~7.7歳の範囲であった。

3) 投与量の決定と投与方法

投与は、臨床適用経路の一つである筋肉内投与とし、1日1回、週7回、3ヵ月間にわたって投与を行なった。本試験に先立って投与量決定のための予備試験として、T-1982 400 mg/kg と 800 mg/kg をそれぞれ1頭ずつ雄のカニクイザルに6日間にわたって筋肉内投与した。その結果、死亡例や著しい体重減少はなく、注射直後の軽い疼痛反応と投与期間中の軟便以外著変がなかった。しかし、800 mg/kg 投与例では投与3日目から、投与局所からの検体の漏れが著しくなり、規定のVolume

				No. of	nonkey	
Exp. group	Concentration (%)	Volume (ml/kg)	3 mont adminis		Recove	ry study
			Male	Female	Male	Female
Control (saline)		1	2(1-2)	2(4-5)	1(3)	1(6)
T-1982 100mg/kg	10	1	2(7-8)	2(9-10)		
T-1982 200mg/kg	20	1	2(11-12)	2(13-14)		
T-1982 400mg/kg	40	1	2(15-16)	2(18-19)	1(17)	1(20)

Table 1 Experimental design for 3 months intramuscular toxicity study of T-1982 in crab-eating monkeys

(40%溶液, 2 ml/kg) を筋肉内に正確に注射することが 困難になった。この結果を参考に本試験における最大投 与量を,筋肉内に連続注射可能な最大量である 400 mg/kg とし,他に公比 2 で 200 mg/kg, 100 mg/kg 投与 群および生理食塩水投与対照群を設定した。動物は Table 1 に示すように配分した。

検体は用時調製とし、滅菌生理食塩水で40%、20%、10%の各濃度となるように溶解したのち 0.3μ のミクロフィルター(富士写真フィルムFM-30)でろ過したものを、左右の後肢大腿部あるいは臀部の $2\sim3$ カ所に分割して注射した。投与溶液の浸透圧比は生理食塩水の $2\sim5$ 倍であり、そのpHは4.73 ~5.14 であった。なお、対照群と400mg/kg 投与群の雌雄各1匹ずつを投与終了後1カ月の回復実験に供し、諸検査と剖検を行なった。

4) 検査

症状の観察を毎日行ない,体重と固型飼料だけを給餌した時の摂餌量の測定を1週間でとに行なった。さらに,試験期間中以下の検査を全例について行なった。なお,採血は動物用ケタラール(塩酸ケタミン,三共)麻酔下で大腿静脈から行なった。

(1) 尿検査(投与前,1ヵ月毎,回復)

尿量(22時間蓄尿), pH, 蛋白,糖,ケトン体,潜血, ビリルビン,ウロビリノーゲン(マルティスティックス, マイルス三共),比重(比重計),沈渣(無染色,鏡検)

(2) 血液検査(投与前,1ヵ月毎,回復)

赤血球数,白血球数(コールターカウンター),ヘマトクリット値(毛細管遠心法),ヘモグロビン 濃度(シアンメトヘモグロビン法),網赤血球数(超生体染色法),血小板数(REES & ECKER 法),白血球百分率(メイーギムザ染色)

(3) 血液化学検査(投与前,1ヵ月毎,回復)

GOT, GPT (REITMAN-FRANKEL 法), ALP (KIND-KING 法), コリンエステラーゼ (高橋, 柴田法), 総コ

レステロール (Zurkowski 法), 尿素窒素 (Urease-Indophenol 法), 総ビリルビン (Evelyn-Malloy 法), 総蛋白 (屈折計), 蛋白分画と A/G (セルロースアセテート膜電気泳動法), 血糖(オルトトルイジンホウ酸法), Na, K (炎光光度計)

(4) 眼底検査(投与前,1ヵ月毎,回復)

ミドリンP(散瞳剤、参天製薬)で瞳孔を散大させ、 直像鏡(ナイツB型検眼鏡)を用いて眼球、眼底を観察 した。さらに、投与前と投与終了時には眼底カメラ(コ ーワ RC-2)で眼底撮影を行なった。

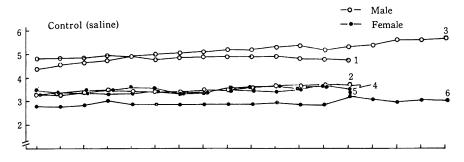
(5) 血中濃度測定(初回投与, 最終投与)

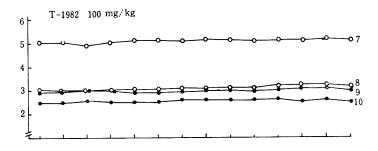
400 mg/kg 投与群 3 例 (No. 15 ° , No. 16 ° , No. 18 ° , No. 19 °),100 mg/kg 投与群 3 例 (No. 7 ° , No. 8 ° , No. 9 °) について,投与後15 , 30 , 60 , 120 , 240 , 360分の6回採血し,Bioassay 法により T-1982 の血中濃度維移を測定した。

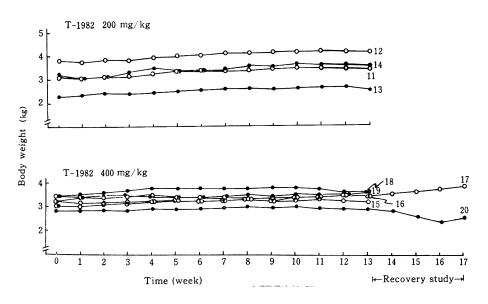
(6) 剖検,組織学的検査

3 カ月間の投与終了後および回復試験終了後,ケタラール麻酔下で放血屠殺し,剖検を行なった。肉眼的に觀察した後,次の臓器を摘出して重量測定を行ない,さらに10%ホルマリン固定, H·E 染色による組織学的検査を行なった。

心*, 肺*, 肝*, 腎*, 脾*, 脳*, 胸腺*, 副腎*, 甲状腺*, 顎下腺*, 膵*, 精巣*, 卵巣*, 下垂体, 腸間膜リンパ節, 骨髄, 胃, 小腸, 大腸, 前立腺, 子宮, 膀胱, 注射部位筋肉(*は重量測定した臓器)。


Ⅱ. 実験結果


1) 一般症状


注射直後にみられた症状としては、400 mg/kg 投与群の一部に疼痛反応があった。それらのサルは、注射植後に注射側の後肢を伸ばしたまますわり込んだり、注射部位をかばうような行動を示したが、10~20分後にはれらの行動はみられなくなった。

断続的な軟便の出現が、ほば投与量に比例して観察さ

Fig. 2 Body weight changes in crab-eating monkeys injected intramuscularly with T-1982 for 3 months

れ,特に投与期間の前半でその傾向が顕著であった。回復試験用に配分した 400 mg/kg 投与 No. 20 章は,投与期間中断続的な軟便の排泄を認める程度であったが,休薬の翌日から約1週間にわたって連日比較的高度の軟便や下痢を呈した。しかし,以後急速に正常便に回復した。

2) 体重と摂餌量

体重の変化を Fig. 2 に示す。投与期間中は各群の雌雄全例に異常な体重の増減はみられず,また摂餌量にも異常は認められなかった。前述の 400 mg/kg 投与群No. 20♀は,休薬後の軟便,下痢の発現と平行して体重と摂餌量が一過性の減少を示していた。

	οN		Volu	Volume (ml/22 hr.)	al/22 l	1r.)			Hd					Protein	ein				Glu	Glucose	
-	укеу Зех		Moi	Month examined	tamin	pə		Mo	Month ex	examined	g		Mo	Month examined	xamin	ed		Mo	nth e	Month examined	ped
	noM	0	н	2	က	Recovery	0	н	2	3	Recovery	0	1	2	3	Recovery	0	1	2	က	Recovery
	1	 &	110	ĺ	118		∞	∞	∞	7		+1	1	+1	+1		1	ı	1	1	
	\$	42		74	62		∞	∞	2	2		+1	+1	+1	+1		ı	I	ı	١	
	ლ	22			182	54	80	∞	9	2	2	+1	ı	+1	1	+1	1	I	1	1	ı
Control	Mean	49	69	99	121		∞	∞	7	7											
(saline)	4	53		95	20		8	6	8			+1	1	+1	+1		1	ı	ı	1	
	2 +	က	40	42	44		6	∞	∞			+1	+1	+1	1		1	ı	1	١	
	9	52		34	64	23	6	∞	∞	7	8	+1	+1	+1	+1	+1	ı	1	I	1	1
	Mean	36	46	22	53		6	∞	∞	∞											
		70		99	78		80	∞	∞	∞		+1	+1	+1	+1		ı		1		
	% 	42	8	10	20		∞	∞	∞	9		+1	+1	I	ı		1	1	I	ı	
T-1982	Mean	26	46	38	74		8	∞	8	2											
100 mg/kg		15	80	08	22		6	∞	7			ı	ı	+1	1		1	1	1	1	
	10 *	93	140	234	74		6	2	9	9		+1	+1	+1	ı		1	ı	I	1	
<u>I</u>	Mean	54	110	157	48		6	∞	- 2	2											
		19	က	6	0		∞	∞	∞			+1	+1	+1			ı	I	1		
-	0 12	116	36	က	11		∞	∞	∞	∞		+1	+1	+1	+1		1	l	1	1	
T-1982	Mean	89	20	9	9		8	8	8	8											
200 mg/kg	13	18	40	56	26		∞	∞	2			+1	+1	+1	ı		I	١	1	1	
	* 14	16	80	9	62		6	2	∞	2		+1	+1	+!	+1		1	1	1	1	
1	Mean	17	09	16	29		6	8	∞	8											
	15	42		10	22		8		7	9		1		+1	ı		ı		1		
	\$ 16	က	18	140	73		6	∞	9	2		+1	ı	+1	1		I	ı	ı	1	
	17	17	28	8	9	32	∞	7	∞	∞	8	+1	+1	+1	+1	+1	ı	ı	ı	<u> </u>	1
T-1982	Mean	21	15	22	35		∞	∞	2												
400 mg/kg		38	99		20		∞	∞	∞	9		+1	ı	+1	+1		ı	1	١	ı	
	۰ 19	116		124 6	148 36	7	6	∞ ∞	∞ ∞	9 &	6	+1	+1 1	+1 +1	11	+	1		1 1	11	ı
	Mean	51	8	_	78		6	8	0 00	7	,										

ă	l
ğ	١
Ĭ	l
က	l
ö	l
2 T	1
86	١
h T-19	
Ľ	
딒	
≱	l
Ÿ	١
lar	1
ਰ	ľ
ins	
aπ	
Ħ	
.H	
ě	1
ect	
Ē	
S	
rey	
ď	
ĕ	
00	
끉	
ea	l
4	
cra	
늇	-
ne of	
Ĕ.	
urine	
linogen in urine of crab-eating mon	
ä	
ğ	
Ĕ.	
뎚	
10	
7	
ä	
þ	
8	
مَ	
пĦ	
S	
ilirubin, occult	
Ή̈́	
Ę	
ij	
Þ	
્કુ	
ib	
۵,	
ne	
ţ	
Ke	
~	
e)	
ğ	
'n	

		.oV		Ķ	Ketone	bodies	sə			Bilir	Bilirubin				Occult blood	bloo	п		D	Urobilinogen	nogei	bodies Bilirubin Occult blood Urobilinogen
	xəS	кєλ		Mo	Month e	examined	ned		Ĭ	onth (Month examined	ned		M	Month examined	xami	ped		Mo	Month examined	xami	ned
	<u> </u>	noM	0	-	2	က	Recovery	0	1	2	က	Recovery	0	1	2	3	Recovery	0	Н	2	က	Recovery
		1	-	1	I	ı		ı	1		1		1	1	1	1		+1	H	+1	+1	
	€	07 (ı	ı	ı			ı	1	1	1		1	I	l	1		+1 +	+1 +	+1 +	+1 +	+
	-	.rs	1	ı	1	ı	1		1	ı			1	1			1	Н	-1	-1	-	-1
Control	Mean	ш —																				
(saline)		4	-	1	1	I		I	1	1	1		1	1	ı	1		+1	+1	+1	+1	
	아	rc	ı	1	ı	١		1	1		1		1	#	+	‡		+1	+1	+1	+1	
		9	1	1	1	1	1	1	1	1	1	1	1	1	1	ı	1	+1	+1	+1	+1	+1
-	Mean	an																				
	-	7	1	1	1	1		١	1	1	1		1		1	1		+1	+1	+1	+1	
	€0	∞	1	ı	1	1		I	I	1	ı		l	I	1	1		+1	+1	+1	+1	
T-1982	Mean	3D																				
100 mg/kg	-	6	1						1		1		ı	1	1	ı		+1	+1	+1	+1	
*	O+	10	l	1	I	1		1	1	1	ı		#	1		1		+1	+1	+1	+1	
	Mean	an																				
	-	11	1	1	1				1	1			I	1				+1	+1	+1		
	(0	12	1	ı	1	1		1	1	1			1	1		١.		+1	+1	+1	+1	
T-1982	Mean	an																				
200 mg/kg		13	1	1		1		1	ı	1	1		I	+	ı	ł		+1	+1	+1	+1	
		14	1	ı	ı	1		ı	I	1	1		+	‡	1	1		+1	+1	+1	+1	
	Mean	an																				
		15	1			1		1		1			I		1	1		+1		+1	+1	
	(0	16	ı		1	1		I	1	1	1		١	1	1	1		+1	+1	+1	+1	
	-	17	1	ı	1	1	ı	1		1	1	1	I			11	1	+1	+1	+1	+1	+1
T-1982	Mean	an																				
$400\mathrm{mg/kg}$		18	ı	1	1	1		I	1	1	1		1	1	1	+		+1	+1	+1	+1	
	아	19	1	I	1	1		1	1	1	l		1	l	‡ -	+		+1	+1 -	+1 -	+1 -	_
		8		1	ı		1			1	1	1			+		1		H	H	H -	H -
	Mean	an uz										,					_					

Table 4 Specific gravity and sediment in urine of crab-eating monkeys injected intramuscularly with T-1982 for 3 months

E: Erythrocytes

		No.		Sp	ecific gra	avity				Sedimer	nt	
	Sex	Monkey		Mo	nth exam	nined			Мо	nth exar	nined	
		Mon	0	1	2	3	Recovery	0	1	2	3	Recovery
		1	1.035	1, 025	1.030	1.035			-	_	-	
	ð	2	1, 045	1.020	1.035	1.040		_	_	_	_	
		3	1.035	1.025	1.035	1.020	1.030		_	_		- 5
Control	M	ean	1.038	1.023	1.033	1.032						\$
(saline)		4	1.040	1.030	1, 035	1.035			_	_	_	
	우	5	1.030	1.035	1.035	1.030			E	E	E	1 1
		6	1.030	1.025	1.045	1.030	1.040	_	-	_		
	Me	ean	1.033	1.030	1.038	1.032						1 1 1
	8	7	1.035	1.035	1.035	1.035		_	_	_	_	
	0	8	1.030	1.040	1.025	1.030			_	_	_	0.5
T-1982		ean	1. 033	1. 038	1.030	1.033						
100 mg/kg	우	9	1.020	1, 030	1, 030	1.030		_	_	_	_	
	¥	10	1, 025	1.020	1.020	1.025		Е		_		
	Me	ean	1.023	1.025	1.025	1.028						
	ô	11	1.045	1.035	1.035			_	_	_		
		12	1.020	1.040	1. 040	1.025			_		_	
T-1982	Me	ean	1.033	1.038	1.038	1.025						
200 mg/kg		13	1.035	1.035	1.045	1,020			E	_	_	
	+	14	1.040	1.030	1.030	1.040		E	E	_		
	Me	ean	1.038	1.033	1.038	1.030						3.11
		15	1.010		1.020	1.010		_			_	1.8
	ð	16	1.040	1.040	1.020	1.025			_	_	_	
		17	1.045	1.045	1.040	1.040	1.050	_	_	_	_	= 1
T-1982	Me	ean	1.032	1.043	1.027	1, 025						
400 mg/kg		18	1.020	1.020	1. 035	1,020		_	_	_	E	
	우	19	1.025	1.025	1.020	1.030			_	E	E	
		20		1.030	1.035	1.035	1. 035			E		
	Me	ean	1. 023	1.025	1. 030	1.028						

	١
3 months	
for	
32 1	
-19	
H	
with	
rly	l
ula	ŀ
ınsc	
am	
int	١
Ď	
scte	
ij	
keys injec	
ıke	
nor	
ing mon	
ating	ŀ
rab-eati	
rab	
in cr	
ü	
obi	
gg	١
em	l
l h	١
t and	l
cri	١
natc	ľ
ıen	l
ls, he	
cell	
ood c	
plo	
te	
νhi	
ls,	
cell	
pc	1
bloc	
Red bl	1
Ä	1
rable 5	
abl	
Tal	

Table 5		Ked blood cells, white bloo	S, WILL	e piood	cells,	nematociit and nemoglobin in crab-eating monkeys injected intraindscularity with 1-1902 for 3 months	C111 G11	ח זובוווי	Stopm	17	מח_כשרוו	1011 91	Treys .	11777611	7 7777	וותפרתוו	311y v	7 777	7061	0 11101	STITE
	No.	•••	RBC	(×104/	4/mm ⁸)		r	WBC ($(\times 10^2/\mathrm{mm}^8)$	nm ⁸)			Hematocrit	- 1	(%)			Hemoglobin		(g/dl)	
	Zex		Month	exa	mined			Month	examined	ned			Month	examined				Month	ı examined		
		0	1	2	8	Recov- ery	0	1	2	3 F	Recov- ery	0	1	2	3	Recov- ery	0	н	2	က	Recov- ery
			275	582	009		180	113	130	82		44	45	41	44		13.0	14.4		13.0	
	0 60	282	572	554 564	519	519	82	6 6	154 85	120	110	39	38 6	40 40	39	40	12.1	12.0	12.1		12.7
Control	Mean	290	561	292	543		121	100	116	86		42	41	40	42		12.6	13.1	12.9	12.9	
(saline)	4		909	619	604		242	73	88	83		45	37	42	42		12.5			14.6	
	O+	546	579	520	537	529	143	203	147	181	122	41	40	40 40	39	43	13.3	13.1	13.3 13.0	14.1	13.7
	Mean	_	592	561	543		177	115	114	128		42	39	41	41			12.1	13.1	13.6	
		614	542	569	531		117	84	49	127		41	40	40	40		11.5	11.4	12.0	11.9	
	∞ (0	287	275	262	529		134	28	82	109		40	45	41	43		11.8	10.5	13.1	12.9	
T-1982	Mean	601	559	582	530		126	81	61	118		41	43	41	42		11.7	11.0	12.6	12.4	
$100\mathrm{mg/kg}$		9/2	282	226	488		8	29	78	08		38	36	36	40		12.2	10.7	10.6	12.0	
	* *	621	613	209	537		107	29	89	20		43	36	36	38		11.2	10.6	11.9	11.3	
	Mean	299	009	265	513		94	29	73	65		41	36	36	39		11.7	10.7	11.3	11.7	
		640	634	209	604		75	29	26	62		40	42	41	40		12.0	13.0	12.6	12.9	
	0 12	654	594	220	521		118	63	72	71		46	41	43	45		15.0	13.6	13.6	14.0	
T-1982	Mean	647	614	589	563		26	65	64	84		43	42	42	43		13.5	13.3	13.1	13.5	
$200 \mathrm{mg/kg}$	13	556	575	220	484		- 86	92	94	68		37	36	37	38		12.5	11.5	11.7	11.5	
		1 465	292	269	484		129	84	126	42		37	38	39	43		11.4	11.5	12.1	13.0	
	Mean	511	571	220	484		114	80	110	84		37	37	38	41		12.0	11.5	11.9	12.3	
			809	650	637		20	65	83	22		33	41	42	43		12.2				
	© 16 17	608	607	521 558	594 543	548	121	111	 	75 82	127	41 38	40 39	36 40	0 4 0 4	39	11.8	11.9	11.5	12.0 12.5	11.7
T-1982	Mean	618	615	226	591		100	82	87	71		39	40	39	41		11.9	12.3	12.6	13.4	
400 mg/kg	18		542	594	205		29	65	81	104		37	37	36	40					10.8	
	20	512	569	518	478	579	108	107	130	73	40	43	41	38	43	40	12.1	13.1	11.1	13.0	13.4
	Mean		577	26.	501	2	2 2	5 8	5 8	C# 42	}	£ 4	- o	- - - -	2 8	- - }			13.1		
	Mean	CTC	110	202	TAC		- B	- R	20	4,		7.7	53	<u>-</u>	40		16.0		16.1		

Table 6 Reticulocyte and platelets in crab-eating monkeys injected intramuscularly with T-1982 for 3 months

		No.		Ret	iculocyte	(%)			Plate	let (×10	⁸ /mm ⁸)	
	Sex	Monkey No.		Mo	nth exa	nined			Мо	nth exan	nined	
		Mon	0	1	2	3	Recovery	0	1	2	3	Recovery
		1	2	2	0	0		122	122	146	104	
	ð	2	2	0	0	2		144	130	142	104	
		3	0	0	2	2		132	114	134	100	120
Control	M	ean	1	1	1	1	4	133	122	141	103	1
(saline)		4	0	0	2	0		116	118	108	130	
	우	5	0	4	0	0		130	140	126	100	
		6	2	2	0	2	4	132	150	122	108	90
	M	ean	1	2	1	1		126	136	119	113	
,	_	7	0	0	2	2		118	114	124	106	2 :
	ô	8	0	2	0	0		142	116	132	126	
T-1982	Me	ean	0	1	1	1		130	115	128	116	. 500
100 mg/kg		9	0	2	0	2		164	104	124	94	
	P	10	0	0	2	0		138	134	138	124	
	Me	ean	0	1	1	1		151	119	131	109	×
	ô	11	0	2	2	2		160	118	120	96	
	0	12	2	0	0	2		124	128	130	104	
T-1982	Me	ean	1	1	1	2		142	123	125	100	1
200 mg/kg		13	2	2	2	0		118	122	116	138	
	¥ 	14	10	4	2	0		134	118	130	100	25,555,53
	Me	ean	6	3	2	0		126	120	123	119	, g
		15	2	2	2	2		124	130	106	116	
	ô	16	0	2	0	0		132	154	126	122	
		17	0	0	0	2	2	150	130	122	102	108
T-1982	Мє	ean	1	1	1	1		135	138	118	113	
400 mg/kg		18	2	0	2	2		136	112	104	138	
	Ф	19	0	2	2	0		132	114	126	104	
		20	0	4	4	2	2	164	106	110	106	114
	Me	an	1	2	3	1		144	111	113	116	

3) 尿検査

結果を Table 2~Table 4 に示す。尿量はばらつきが大きかったが、その変化から薬剤投与の影響を読み取ることができなかった。pH、蛋白、糖、ケトン体、ビリルビン、ウロビリノーゲンには、投与期間を通じて異常が認められなかった。尿潜血反応が対照群を含む各群の雌にのみ少数例に出現した。しかし、投与期間に比例した増強はみられず、逆に消失する例もあった。

4) 血液検査

Table 5~Table 7 に示すように、赤血球数、ヘマトクリット値、ヘモグロビン、網赤血球数、血小板数には薬剤投与に起因すると思われる異常が認められなかった。

白血球数は全体的にかなりの変動を示していたが、その大半は生理的範囲内での変化であった。生理的範囲を逸脱している数値としては、対照群 2 例 (No. 18, No. 49) の投与前検査でみられた白血球数増加(分画では好中球比の増加)と100 mg/kg 投与 No. 78 の 2 ヵ月後にのみ見られた白血球数軽度減少があった。白血球分画で好酸球の増加を示す例が対照群を含む各群に認められたが、投与量相関はなかった。

5) 血液化学検査

結果をTable 8~Table 11 に示す。 T-1982 200mg/kg 投与の1例 (No. 14♀) と 400 mg/kg 投与の1例 (No. 20♀) は,投与前の検査ですでに GOT, GPT が高値を示していたが, T-1982 投与開始により正常値に復した。 GOT の一過性上昇が 400 mg/kg 投与の1例 (No. 19♀) の1カ月後の検査で認められたが,この程度の一過性の上昇は対照群の1例 (No. 6♀) にも同様に出現しており,薬剤投与によるものかどうかは明らかではない。 ALP では,400 mg/kg 投与の1例 (No. 15 き)が投与前から若干高値を示しており,投与開始によって ALP 値がさらに上昇した。また 400 mg/kg 投与の1例 (No. 18♀)は,1カ月後検査で ALP の中等度上昇,を示したが,2カ月以降の検査結果は正常であった。

他にも投与前検査ですでに ALP が高値を示している 個体が対照群を含む各群の少数例に認められたが、それ らの例では薬剤投与による検査値の変動は著しくなかっ た。

血清蛋白のセルロースアセテート膜電気泳動では、アルブミン分画の陽極側への易動度増加が、投与量に比例して観察された。しかし、A/Gには変化がみられず、また回復試験ではかなり軽減されていることからみて、可逆的な変化であった。

他の検査項目,コリンエステラーゼ,総コレステロール,尿素窒素,総ビリルビン,総蛋白,血糖,Na,Kには薬剤投与に起因すると思われる異常を認めなかった。

6) 眼底検査

400 mg/kg 投与の1例 (No. 20 ♀) は,入荷時からすでに左眼球水晶体が混濁し,視力が失われていた。との所見は,投与期間中不変であった。他の動物の眼球,眼底には異常が認められなかった。

7) 血中濃度測定

結果を Fig. 3 に示す。血中濃度推移を one compartment model で解析した結果, 400, 100 mg/kg の両投与群ともに、検体の吸収速度定数が、初回投与時より最終投与時の方が大きい傾向にあった。しかし、排泄速度定数、分布容積および半減期には統計的な差はみられなかった。

8) 剖檢時肉眼所見

大腸粘膜から突出した小豆大黒色で、中に腸結節虫と思われる線虫を含む寄生虫性結節が、使用した20頭のサルのうち7頭に認められた。さらに、回復試験用とした対照群の1例(No.69)では後腹膜に寄生虫性の結節があり、これを含めると8頭(40%)のサルに寄生虫の感染が観察された。

胃幽門部粘膜から突出した小豆大から大豆大のポリープが、薬剤投与とは無関係に対照群の1例(No. 26),200 mg/kg 投与の1例(No. 118),400 mg/kg 投与の1例(No. 199)におのおの観察された。また、胃大弯部の漿膜側に突出した小豆大のポリープが、対照群の1例(回復試験 No. 59)に認められた。

他にも肺に、米粒大から大豆大の灰白色結節を有するもの3例(No. 10年、No. 11 き、No 12 き)、肺と胸膜の癒着をみるもの2例(No. 10年、No. 18 年)、肝の粟粒大灰白色結節の散在と脾の被膜から突出した米粒大から小豆大の隆起をみるもの1例(No. 13 年)、下腹部の腹壁ヘルニアと左側眼球水晶体の白濁(投与前から観察されているもの)をみるもの1例(No. 20 年)などの肉眼的異常所見が観察されたが、すべて用量依存性のない偶発的な所見であった。

薬剤注射部位筋肉割面の肉眼的観察では限局した暗赤色変色部位が対照群の1例(No. 4♀),100 mg/kg 投与群1例(No. 9♀),200 mg/kg 投与群2例(No. 11⋄, No. 12⋄) と 400 mg/kg 投与群2例(No. 18♀, No. 19♀)に認められた。このうち,400 mg/kg 投与群2 例の投与局所には,筋肉の限局した灰白色変色部位も観察された。回復試験では,対照群の1例(No. 6♀)にのみ軽度の暗赤色変色部位が観察された。

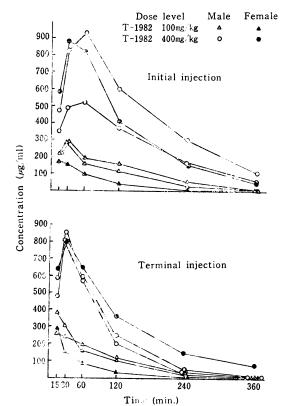
Table 7 Differential white cell counts in crab-eating

				befor	re exp	erim	ent			af	ter 1 n	nontl	1	
	Sex	Monkey No.	Net	itro.	no.	.00	ph.	no.	Neu	ıtro.	по.	o.	oh.	1
		110.	Staff	Seg.	Eosino.	Baso.	Lymph.	Mono.	Staff	Seg.	Eosino.	Baso.	Lymph.	Mono
		1	0	40.5	0	0	57. 5	2.0	0.5	50.0	1.0	0	47.5	1
	8	2	1.5	38.0	1.0	0	59.0	0.5	1.5	38. 0	3.5	0	55.0	
		3	0	28.0	0.5	0	70.5	1.0	0	45.0	2.0	0	ł	
Control	M	lean	0.5	35. 5	0.5	0	62.3	1.2	0.7	44. 5	2. 2	0	50.8	1.
(saline)		4	5.5	65. 5	2, 5	0	25. 5	1.0	0.5	41.0	6.0	0.5	51.5	0.
	\$	5	0.5	26.5	2.5	0.5	68. 5	1.5	0.5	40.5	2.5	0.5	54.5	1
		6	0	46.0	1.5	1.0	50.0	1.5	0	41.5	2. 5	1.5	54.0	0.
	M	ean	2, 0	46.0	2.2	0.5	48.0	1.3	0.3	41.0	3.7	0.8	53, 3	0.
	8	7	0.5	58.5	1.0	0	39.0	1.0	1.0	45.0	7.5	0.5	44.0	2.
		8	0.5	30.5	1.5	0	66.0	1.5	0	20.0	1.0	0	76.5	2.
T-1982	М	ean	0.5	44.5	1.3	0	52. 5	1.3	0.5	32.5	4.3	0.3	60, 3	2.
$100\mathrm{mg/kg}$	φ	9	4.0	49.0	0	0	47.0	0	1.0	38.0	2.0	0	58.0	1.
	T	10	0.5	34. 5	3.0	0	60.5	1.5	1.0	37.0	3.0	0	58.0	1.
	М	ean	2.3	41.8	1.5	0	53.8	0.8	1.0	37. 5	2. 5	0	58.0	1.
	8	11	1.0	25.0	2.0	1.0	69.0	2.0	0	16.0	5.0	0	78.0	1.
		12	1.0	54. 5	4.5	0	38.5	1.5	0	31.0	4.0	0.5	62.0	2.
T-1982	M	ean	1.0	39.8	3. 3	0.5	53, 8	1.8	0	23.5	4.5	0.3	70.0	1.
200 mg/kg	φ	13	2.0	34.0	5. 0	0	58.0	1.0	1.0	30.5	5. 5	0	61.0	2.
		14	1.0	36. 5	3.0	0.5	58.5	0.5	2.0	38.0	4.0	1.0	54.0	1.
	M	ean	1.5	35. 3	4.0	0.3	58.3	0.8	1.5	34.3	4.8	0.5	57.5	1.
RECORDED CO.		15	0	58.0	3.0	1.0	37.0	1.0	1.0	55.0	3.0	1.0	39.0	1.0
	ð	16	4.0	42.0	1.0	0	52.0	1.0	2.0	57.0	2.0	0	37.0	2.0
		17	0	28.0	0.5	1.0	69.5	1.0	0	22.0	0	0	77.0	1.0
Γ-1982	Me	ean	1.3	42.7	1.5	0.7	52.8	1.0	1.0	44.7	1.7	0.3	51.0	1.3
400 mg/kg		18	2.0	20.0	5.0	0	70.0	3. 0	1.0	34. 0	12.0	0.5	52.0	0, 5
	우	19	0	59.0	1.0	0	38.0	2.0	0.5	55.0	3.0	0	39.0	2.5
		20	0	25. 5	0.5	0	72.5	1.5	0.5	47.0	1.5	0	49.0	2.0
	Me	ean	0.7	34.8	2. 2	0	60.2	2. 2	0.7	45.3	5.5	0.2	46.7	1.7

monkeys injected intramuscularly with T-1982 for 3 months

	afte	er 2 m	onth	S			aft	er 3 m	onth	S				Reco	very		
Neu	tro.	no.	.00	ph.	90.	Neu	itro.	no.	, 0	ph.	30.	Neu	itro.	no.	.0	ph.	10.
Staff	Seg.	Eosino.	Baso.	Lymph.	Mono.	Staff	Seg.	Eosino.	Baso.	Lymph	Mono.	Staff	Seg.	Eosino.	Baso.	Lymph.	Мопо.
1.5	48.5	1.0	0	45.0	4.0	0.5	33.0	2.0	0	62.0	2. 5						
1.0	50.5	3, 5	0	43.0	2.0	1.0	42.5	0.5	0	55.0	1.0						
1.5	35. 5	6.0	0	53. 5	3.5	1.0	55. 5	4.5	0	37.5	1.5	1.5	52. 5	6.0	0.5	34.0	5.5
1.9	44.8	3, 5	0	47. 2	3. 2	0.8	43.7	2.3	0	51.5	1.7						
1.0	22.0	6. 5	0	69.0	1.5	1.0	21.5	12.0	0	64. 5	1.0						
0	18.5	5.0	0.5	74.5	1.5	1.0	40.0	4.0	0	53.5	1.5						
0.5	32.0	1.0	0	66.0	0.5	1.0	62.0	0	0	36.0	1.0	1.0	29.5	4.0	1.0	62. 5	2.0
0.5	24. 2	4.2	0.2	69. 8	1.2	1.0	41. 2	5.3	0	51.3	1.2						
2.0	38.0	1.0	0	55.0	4.0	1.5	60.5	0	0	36.5	1.5					ĺ	
0.5	37.5	3.0	0.5	56. 5	2.0	0.5	19.5	0	0	79. 0	1.0						
1.3	37.8	2.0	0.3	55.8	3.0	1.0	40.0	0	0	57.8	1.3						
1.0	47.0	5.0	0.5	46.0	0.5	2, 5	65. 5	4.0	0	26.5	1.5						
0	23.0	12.0	0	63.0	2.0	1.0	29.0	8, 5	0	60.0	1.5						
0.5	35. 0	8.5	0.3	54.5	1.3	1.8	47.3	6.3	0	43.3	1.5						
0	25, 0	6.0	0	68.0	1.0	0	26.0	10.0	0	64.0	0						
1.5	27.5	5.0	0	63.0	3.0	1.0	49.0	0	0	50.0	0						
0.8	26. 3	5.5	0	65. 5	2.0	0.5	37.5	5.0	0	57.0	0						
3.0	49.0	6.0	0	41.5	0.5	0.5	55.0	6, 0	1.0	36.5	1.0						
0.5	63.5	2. 5	0	30.0	3.5	0.5	48.5	2.0	0.5	46.5	2.0						
1.8	56.3	4.3	0	35.8	2.0	0.5	51.8	4.0	0.8	41.5	1.5						
6.5	67.0	0	0.5	24.0	2.0	1.0	57.0	1.0	2.0	35.0	4.0						
3.5	70.5	2.0	1.0	21.0	2.0	3.5	54.5	2.5	0.5	38.0	1.0						
0.5	26.5	1.0	0.5	70.5	1.0	1.5	45.5	3.0	0.5	48.5	1.0	0.5	24.0	1.0	0	73.5	1.0
3. 5	54.7	1.0	0.7	38. 5	1.7	2.0	52.3	2. 2	1.0	40.5	2.0						
1, 5	51.5	14.5	0	31.0	1.5	3.0	75.0	2.0	0	19.0	1.0						
1.5	61.5	1.5	0	34.0	1.5	1.0	47.5	4.0	0	46.5	1.0						
0.5	37.5	1.5	0	59.0	1.5	1.0	24.0	3.0	0.5	70.5	1.0	1.5	31.0	6.5	0.5	57.5	3.0
1.2	50. 2	5.8	0	41.3	1.5	1.7	48.8	3.0	0.2	45.3	1.0						

Table 8		GPT, a	GOT, GPT, alkaline phosphatase (ALP)	phosp	hatase	(ALP)		and cholinesterase in	terase	in cral	crab-eating		keys i	njectec	l intra	monkeys injected intramuscularly with $\Upsilon\mbox{-1982}$ for	arly wi	ith T-	1982 fc		3 months
			GOT ((Кагше	en unit)	(C)		GPT (GPT (Karmen unit)	n unit		ALP		(King-Armstrong		unit)		Cholinesterase	sterase	(4pH)	
	т кел Зех	60	Mon	Month exa	mined			Mont	Month examined	nined			Month	th exa	examined			Month	th exar	examined	
	TOM	0	П	2	ده.	Reco v -	0	1	7	က	Recov- ery	С	П	2	3	Recov-	0	Н	2	က	Recov- erv
			53	16	17		23	15	14	14		15.2	13.2	11.8	11.5		0.38	0.48	0.22	0.57	
	0	35	53	28	32		17	20	550	15				88.2	79.1					1,35	
		!	11	113	17	10	10	10	11	6	6	25.2	26.3	27.7	30.3	25.6	1.43	1.19	1, 26	1.47	1.28
Control	Mean	32	23	19	22		17	15	15	13		36.5	42.3	42.6	40.3		1.02	1.02	0.98	1.13	
(saline)		_	22	56	23		82	20	27	22		14.4	15.6	18.1	17.3		1.27	1.64	1.83	1.59	
	아 	500	20	33	21		8	17	16	13								1.18			
	9		32	21	24	53	17	19	56	18	14	18.7	18.7	20.8	20.5	20.1	0.88	1, 15	1.21	1.22	1.17
	Mean	22	25	37	23		22	19	23	18		17.2	17.2	19.6	19.7		1.08	1.32	1.45	1.41	
	-	23	70	70	22		13	18	16	14		17.0	16.8	17.0	18.4		1.10	1.19	1.37	1.31	
			18	22	19		16	18	15	11		8.06	87.6	106.5	94.2		1.66	1.88	2, 11	2.02	
T-1982	Mean	22	19	23	21		15	18	16	13		53.9	52.2	61.8	56.3		1.38	1.54	1.74	1.67	İ
100 mg/kg	6	30	18	21	18		12	10	14	∞		16.9	15.4	16.1	18.2		0.75	0.99	1.03	1.17	
			22	22	32		20	24	17	15		22.3	19.0	17.1	19,3		1,15	1.39	1.49	1.47	
	Mean	29	20	22	22		16	17	16	12		19.6	17.2	16.6	18.8		0.95	1.19	1.26	1.32	
	. T	17	702	16	21		11	21	10	14		45.8	41.1	41.6	42.4		0.99	1. 22	1.26	1.23	
	12	22	34	19	35		17	20	13	53		79.7	67.1	89.2	94.2		0.85	0.98	1.12	1.14	
T-1982	Mean	22	22	18	28		14	21	12	22		62.8	54.1	65.4	68.3		0.92	1.10	1.19	1.19	
200 mg/kg	13	32	20	20	72		53	16	17	18		24.0	27.2	33.9	28.8		1.15	1.37	1.57	1.56	
	14	45	15	17	30		98	72	18	17		12.2	11.5	10.6	11.1		0.96	1.24	1.24	1.42	
	Mean	39	18	19	83		28	82	18	15		18.1	19.4	22.3	20.0		1.06	1.31	1.41	1.49	
		11	50	16	19		15	17	12	12		45.1	61.2	63.9	86.0		0.82	1. 22	1, 17	1.18	
	\$ 16	18	27	31	33		6	8	(~	8			-	_			1.19		1.73	1.69	
	17	13	52	15	31	12	10	19	10	18	13	23.8	21.2	21.0	21.0	21.9	0.28	0.49	0.41	0.43	0.42
T-1982	Mean	14	24	21	82		11	15	10	13		30.5	33.9	34.4	42.9		0.76	1.03	1.10	1.10	
400 mg/kg			23	56	28		16	19	50	19		13.3	87.6	24.1	35.2		1.08	1.26	1.44	1.51	
	4 19 20	22	36 59	19	22 42	66	24	8 5	12	15	13	27.7	28.4	24.1	28.1	101	0.45	0.63	0.71	0.58	5
	Mean	-	39	23	26		41	17	13	13							8 8				0.0


	-OV	_	Total cholesterol (mg/dl)	Jestero	1 (mg/	(11)	a	rea nit	Urea nitrogen (mg/dl)	(mg/d	G		Bilirul	Bilirubin (mg/dl)	g/dl)	-		Glucos	Glucose (mg/dl)	/dI)	
	Rey J		Mont	Month exar	mined			Month		examined	İ		Mont	Month examined	ined			Month	Month examined	ined	
		0	1	2	3	Recov- ery	0	1	2	3	Recov- ery	0	1	2	8	Recov- ery	0	1	2	3	Recov- ery
	* 1	102	102	119	124		15.9	17.1	17.0	17.5		0,1	0.1	0.1	0.1		62	42	43	30	
			71	68	104	72	17.8		13.1	16.3	16.5	0.1	0.1	0.2	0.1	0.1	31	56		77 77	41
Control	Mean	106	86	116	119		17.1	16.8	15.4	17.2		0.1	0.1	0.1	0.1		20	37	38	31	
(saline)	4		144	197	154		24.5	17.2	19.1	20.0		0,1	0.1	0.1	0.1		44	39	30	31	
	.2		141	155	132					16.1		0.1		0.1			36	83	56	43	
	9	136	126	152	169	121	18.3	17.5	16.6	16.9	17.9	0,1	0.1	0.2	0.1	0.1	40	47	43	44	44
	Mean	140	137	168	152		18.6	16.6	17.3	17.7		0.1	0.1	0.1	0.1		40	38	33	39	
	2	116	94	94	108		16.0	18.3	15.8	14.8		0.1	0.1	0.1	0.1		99	39	45	35	
		122	136	142	143		17.8	19.4	19.1	19.0		0.1	0.1	0.1	0.1		37	37	43	42	
T-1982	Mean	119	115	118	126		16.9	18.9	17.5	16.9		0.1	0.1	0.1	0.1		47	38	44	39	
100 mg/kg	6 	169	153	138	145		18.6	19.7	19.4	18.0		0.1	0.1	0.1	0.1		35	37	40	35	
		124	109	66	113		17.5	16.4	17.4	15.0		0.1	0.1	0.2	0.1		33	36	35	41	
	Mean	147	131	119	129		18.1	18.1	18.4	16.5		0.1	0.1	0.2	0.1		37	37	38	38	
	* 11	122	140	132	133		18.3	18.2	17.0	15.7		0.1	0.1	0.1	0.1		43	21	26	46	
		161	151	120	176		16.3	15.4	15.7	12.4		0.1	0.1	0.1	0.1		49	44	51	26	
T-1982	Mean	142	146	141	155		17.3	16.8	16.4	14.1		0.1	0.1	0.1	0.1		46	48	54	51	
200 mg/kg	0 13	119	110	120	123		18.7	17.6	14.6	12.4		0.1	0.2	0.1	0.1		41	37	40	47	
	+ 14	115	138	146	147		18.4	19.9	18.9	18.9		0.1	0.1	0.1	0.1		43	44	48	39	
	Mean	117	124	133	135		18.6	18.8	16.8	15.7		0.1	0.2	0.1	0.1		42	41	44	43	
			106	106	86		16.5		14.9			0.1	0.1	0.1	0.1		36	39	40	30	
	\$ 16 17	132	121	130	132	140	19. 1 19. 3	16.9 19.2	17.8	16.9 15.0	17.5	0.1	0.1	0.1	0.1	0.1	36 49	30 44	43 54	34 45	47
T-1982	Mean	128	122	126	126		18.3	16.8	15.5	15.8		0.1	0.1	0.1	0.1		40	38	46	36	
400 mg/kg			141	140	155		19.6	14.8	14.6			0.1	0,1		0.1		40	41	48	42	
	4 19	160	151	163	173	2	15.4	11.9	13.7			0.1	0.1	0.1	0.1	•	43	35	43	28	Ç
	07	_	171	177	134	13/				14. 2	19.3	0.1	0.1			0.1	44	44	79	41	40
	Mean	133	138	143	154		18.2	15.3	15.2	14.6		0.1	0.1	0.1	0.1		42	40	48	37	

Total cholesterol, urea nitrogen, bilirubin and glucose in crab-eating monkeys injected intramuscularly with T-1982 for 3 months Table 9

Recovery 4.16 4, 11 10 61 က 4.24 4.31 4.61 52 52 53 22 22 4.20 4.49 4.17 4. 44 3. 67 4. 00 86 52 69 22 18 32 Month examined 83 34 က Total protein, sodium and potassium in crab-eating monkeys injected intramuscularly with T-1982 for 3 months 4. က K (mEq/L) 4.26 4.01 4.00 22 3.72 4.21 3.40 67 හ 74 93 59 75 46 86 36 22 28 14 58 38 8 38 25 8 61 က ന്ന് ന് က က က က 4 4 e, 4.05 4.08 4.23 4.12 4, 44 4, 13 44 90 8 59 85 87 23 66 23 49 2 82 8 85 83 30 28 7 74 50 87 51 က က က က က က က က 4.17 3.90 4.40 4.18 3.94 4.59 3.78 4, 10 3.89 3.72 4.17 4.13 23 35 93 32 93 93 62 33 87 8 8 9 8 4 က က 4. 6. 4. Recovery 148. 146. 147 150 149.8 150.8 149.7 Month examined 2 00 2 œ ß 146. 149. 148. 147. 148. 150. 150. 150. 148. 148. 145. 151. 150. 151. 150. 151. 147. 147. Na (mEq/L) വ 149.2 149.2 148.8 145.3 149.1 147.4 151.1 S 9 146. 148. 149. 151. 145. 149. 145. 149. 148. 149. 152. 152. 152. 145. 150. 2 147.2 152.3 147.1 148.8 146.6 150,0 147.7 150.4 150.4 149.2 150.2S Ŋ 6 6 2 151.7 150. 148. 148. 145. 147. 148. 150. 149. 145. 148. 148. 146. 147. 152. 149.4 148.0 151.1 146.0 148. 7 149. 3 147.6 149.5 2 147.7 148. 149. 149. 148. 148. 149. 149. 148. 148. 148. 148. 0 151 Recovery 9 0 0 7.0 ∞i Total protein (g/dl) Month examined 8.0 8.0 7.0 7.5 7.0 8.0 7.8 7.6 8.2 7.6 8.0 7.8 7.5 7.6 7.6 7.2 8.0 0 က 7.6 7.6 8.6 7.4 8.2 7.0 7.3 6 9 œ 7.0 8 7.0 7.0 7.8 7.0 8.0 S 7.0 7.4 9 $^{\circ}$ 7 % % 7. 7 7. 7.07.8 7.6 7.6 7.2 8.8 7.4 7.8 7.6 7.4 8.0 7.27.0 7.3 7.0 က 7.0 7.1 \vdash ۲. 7.07.47.4 7.3 8.0 2 0 7.0 7.0 7.0 7.6 0 13 2 0 N 7.2 2 0 ۲. ۲. ∞. 2 Ŀ. 6.8.7 2 တ် ထံ Monkey No. **~** 8 327 4 12 0 9 11 15 16 17 2 2 28 13 Mean Mean Mean Mean Mean Mean Mean Mean Table 10 xəs 60 O+ €0 아 O+ €0 60 100 mg/kg 400 mg/kg 200 mg/kg (saline) Control

		Table 11	11 Protein fraction	and A/G in crab-eating	monkeys injected intramuscularly	with T-1982 for 3	months	
			before experiment	after 1 month	after 2 months	after 3 months	Recovery	l
	Monkey Sex	Alb.	Globulin $\alpha \mid \beta \mid \gamma$ A/G	Alb. $\frac{\text{Globulin}}{\alpha \mid \beta \mid \tau} \text{A/G}$	Alb. $\frac{\text{Globulin}}{\alpha \mid \beta \mid \gamma} \text{ A/G}$	Alb. $ \frac{\text{Globulin}}{\alpha \mid \beta \mid \tau} \text{ A/G} $	Alb. $\begin{vmatrix} Globulin \\ \alpha & \beta & \gamma \end{vmatrix}$ A/G	l v
,	3 2 1	(60.9 2 58.9 3 51.8	13. 6 9. 216. 3 1. 56 7. 112. 521. 4 1. 43 8. 124. 615. 4 1. 08	53.0 19.213.614.1 1.13 41.3 26.917.314.4 0.70 49.7 13.518.718.1 0.99	53.6 12.015.618.7 1.16 56.4 9.615.418.6 1.29 50.5 11.20.917.5 1.02	55.1 12.218.014.6 1.23 51.8 13.517.017.7 1.07 41.3 9.610.638.5 0.70	56.3 6.311.825.4 1.29	68
Control	Mean	57.2	9.6 15.4 17.7 1.36	48.0 19.9 16.5 15.5 0.94	53. 5 10. 917. 318. 3 1. 16	49.4 11.815.223.6 1.00		
(saline)	۰ 	50.8 53.3 49.8	50.8 6.528.114.6 1.03 53.3 10.317.419.0 1.14 49.8 18.611.819.8 0.99	53. 0 14. 510. 821. 7 1.13 47. 1 19. 017. 616. 3 0. 89 46. 0 10. 314. 928. 7 0.85	49.1 9.622.219.2 0.96 46.0 12.821.419.8 0.85 45.3 10.617.326.8 0.83	47.9 9.124.019.0 0.92 52.9 10.616.320.2 1.12 47.7 9.815.027.6 0.91	55.2 7.412.924.5 1.23	83
	Mean	51.3	11.819.117.8 1.05	48.7 14.614.422.2 0.96	46.8 11.020.321.9 0.88	49.5 9.818.422.3 0.98		
	8 0	47.3	12. 314. 026. 3 0. 90 7. 425. 511. 4 1. 26	50.2 7.315.127.4 1.01 50.7 8.713.826.8 1.03	50.6 16.312.720.5 1.02 54.7 11.615.118.6 1.21	55.9 9.217.817.1 1.27 60.9 11.217.810.2 1.56		
T-1982	Mean	51.5	9.919.818.9 1.08	50.5 8.0 14.5 27.1 1.02	52.7 14.0 13.9 19.6 1.12	58.4 10.217.813.7 1.42		
100 mg/kg	9 10	43.7	11.828.715.7 0.78 11.730.916.0 0.71	47.4 7.915.828.9 0.90 43.0 15.215.825.9 0.76	46.1 12.919.421.6 0.86 45.8 12.014.627.6 0.85	47.6 12.8 24.4 15.2 0.91 41.8 20.7 13.0 24.5 0.72		
	Mean	42.6	11.829.815.9 0.75	45. 2 11. 6 15. 8 27. 4 0. 83	46.0 12.517.024.6 0.86	44.7 16.818.719.9 0.82		
	\$ 111 \$ 12	54. 7 48. 3	10. 318. 217. 2 1. 18 12. 526. 812. 5 0. 93	51. 1 19. 415. 613. 9 1. 04 56. 6 14. 511. 717. 2 1. 30	54.9 28.3 8.8 8.0 1.22 56.9 9.518.415.2 1.32	48.2 10.131.010.7 0.93 56.5 9.219.115.3 1.30		
T-1982	Mean	51.5	11. 4 22. 5 14. 9 1. 06	53. 9 17. 0 13. 7 15. 6 1. 17	55.9 18.913.611.6 1.27	52.4 9.725.113.0 1.12		
200 mg/kg	♀ 13 14	3 52.3 1 53.7	17. 413. 816. 5 1. 10 14. 421. 310. 6 1. 16	50. 0 15. 914. 020. 1 1. 00 48. 6 16. 216. 218. 9 0. 95	51.6 11.912.623.9 1.06 49.5 10.518.921.1 0.98	55.6 10.614.819.0 1.25 51.6 12.016.120.3 1.06		
	Mean		53.0 15.9 17.6 13.6 1.13	49.3 16.1 15.1 19.5 0.98	50.6 11.2 15.8 22.5 1.02	53.6 11.3 15.5 19.7 1.16		1
	\$\begin{array}{c} 15 \\ 0 \\ 16 \\ 17 \\ \end{array}		56. 5 11. 3 19. 2 13. 0 1. 30 50. 0 9. 7 25. 7 14. 6 1. 00 57. 4 7. 2 24. 1 11. 3 1. 35	49. 7 13. 918. 717. 6 0. 99 46. 5 17. 113. 922. 5 0. 87 55. 1 13. 418. 712. 8 1. 23	51. 5 13. 417. 217. 9 1. 06 52. 5 11. 720. 115. 6 1. 11 55. 4 9. 723. 111. 8 1. 24	47.4 14.7 20.0 17.9 0.90 55.1 12.318.214.4 1.23 49.3 4.015.331.3 0.97	58.1 5.618.118.1 1.39	39
T-1982	Mean	54.6	9.423.013.0 1.22	50.4 14.8 17.1 17.6 1.03	53.1 11.6 20.1 15.1 1.14	50.6 10.3 17.8 21.2 1.03		
400 mg/kg	4 20 20		53.6 4.817.524.1 1.16 47.6 11.415.226.0 0.91 50.8 11.325.412.5 1.03	46. 2 8. 922. 522. 5 0. 86 48. 3 14. 714. 722. 3 0. 94 54. 2 9. 318. 218. 2 1. 18	54. 5 10. 418. 316. 8 1. 20 53. 8 11. 017. 018. 1 1. 16 56. 4 9. 621. 812. 2 1. 29	43. 8 27. 914. 613. 7 0. 78 56.3 5. 615. 123. 0 1. 29 56.4 9.415. 518. 8 1. 29	49.3 16.318.216.3 0.97	
	Mean	50.7	9.219.420.9 1.03	49.6 11.0 18.5 21.0 0.99	~	7 14.315.118.5 1.		:

Fig. 3 Drug concentrations in crab-eating monkeys injected intramuscularly with T-1982 for 3 months

9) 臟器重量,臟器重量体重比

Table 12~Table 14 に示すように、個体間にかなりのばらつきがみられた。胸腺重量、重量体重比の減少が、投与各群および回復例で散発的にみられた。200mg/kg 投与群の1例(No. 11仓)では、甲状腺、胸腺および結巣重量、重量体重比の減少を認めた。剖検時肉眼所見で、肺と胸膜の癒着があり肺に灰白色結節のみられた100 mg/kg 投与群の1例(No. 10♀)では肺の重量、重量体重比の増加と肝、脾の重量体重比の軽度増加がみられた。また回復試験の1例(No. 20♀)の肝重量体重比が、わずかに高い値を示した。

10) 組織学的検査

結果を Table 15 に示す。大腸粘膜に散在していた 寄生虫性結節は、大腸粘膜下組織の肉芽嚢であり、その 内腔には腸結節虫の虫体と necrotic debris を容れてい た (Photo. 1)。

また、胃の幽門部粘膜のポリープは、粘膜筋板が拳上 してできた有柄ポリープで、粘膜筋板から上の粘膜層の 高さも若干高くなっていたが胃腺や粘膜上皮の構成には特に異常がみられなかった (Photo. 2)。 このうちの1例 (No. 2) では、粘膜筋板近くまで入り込んだ Nochtia nochti と思われる寄生虫の虫体が観察され、粘膜固有層と粘膜下組織には好酸球浸潤が高度に認められた。 このことからみて、これら胃粘膜で観察されたポリープは、多分寄生虫の刺激によって生じた反応性増殖であろうと思われた。 No. 5♀の胃大弯蝶膜側のポリープは古い肉芽組織で、中央部には石灰沈着した線維がみられた。 その周囲にはリンパ球、組織球、線維芽細胞などの浸潤があり、寄生虫性の古い病巣と思われた (Photo. 3)。

肉眼的にみられた他の異常所見も、そのほとんどが寄 生虫刺激による変化であることが組織学的に確認または 推定された。 すなわち, 肺にみられた結節はすべて気管 支肺炎の像を呈していたが、その炎症巣には例外なく好 酸球が高度に浸潤しており,うち1例 (No. 10♀) では 病巣内に肺ダニの虫卵がみられた (Photo.4)。また, 肺 と胸膜が癒着していた例ではその部位に炎症像があり、 炎症性癒着のあったことをうかがわせていた。 200 mg/ kg 投与群1例(No. 139)の肝にみられた粟粒大白色 結節は,肝実質内の限局性の肉芽組織であり,好酸球浸 潤が著しかった。寄生虫は確認できなかったが、寄生虫 性の肉芽組織と思われるものであった (Photo. 5)。ま た、この例の脾表面からの突出部位には、組織球の増生 と好酸球の浸潤を特徴とした肉芽腫様の変化がみられ た。その原因は明らかではないが、薬剤投与によるもの ではなく,多分寄生虫の刺激によるものであろうと思わ れた (Photo. 6), No. 20♀の左眼球水晶体は白濁して いた。

他の組織学的に観察された変化としては、肝の実質内限局性細胞浸潤が対照群も含めて各群に散発的にみられたほか、対照群1例(No. 49)の腎では集合管上皮の限局した壊死と壊死上皮の内腔への脱落が、400 mg/kg投与の1例(No. 209)の腎では限局性の間質細胞浸潤がみられた。さらに、臓器重量の減少をみた胸腺では皮質の萎縮があり、同じく重量の減少していた精巣では、性成熟以前のサルを使用したためと思われる精細管の未熟像が観察された。これらの変化はいずれも用量依存性がなく、薬剤投与とは無関係に出現していた。

薬剤投与部位の筋肉には、出血、浮腫、細胞浸潤、筋線維の変性、壊死、線維化などの障害像がみられたが(Photo.7)、100 mg/kg と 200 mg/kg 両投与群の注射局所の障害は対照群と同程度であり、400 mg/kg 投与群の筋障害は対照群より若干強く現われていた。回復試

Table 12 Absolute organ weights in crab-eating monkeys injected intramusculary with T-1982 for 3 months

		ht	88 88	22	ĺ		75 15	45			38 65	52			02 41	72		
	Testis	Right	11.	∞ ∞			18.	12.			3.6	2.5			5.0	3.7		
	Te	Left	11. 22 4. 80	8.01			17.83	11.92			1.44	2.60			3.20	4.19		
		Ovaries			0.67	0.55			0.25	0.40			0.30	0.59			0.49	0.49
	Adre-	nals	0.46 0.55	0.51	0.50	0.49	0.79	0.65	0.46	0.57	0.45	0.43	0.60	0.53	0.60	0.55	0.67	0.69
	Pancre-	as	8.14 6.45	7.30	7.67	6.64	10.65	8.48	5.24	5.65	6.59	6.65	6.20	5.19	6.35	6.58	7.70	7.15
	Colon		7.93	6. 27	11. 56 8. 22	9.89	6.79	5.92	6.07	8. 57	5.95 5.04	5.50	7.75	6.35	10.85 10.20	10.53	4.53	5.34
ıt (g)	ıey	Right	7.10	6.75	5.05	6.36	8.46 6.29	7.38	6.65	6.91	7.20	6.98	6.05	6.39	7.65	7.31	7.28	7.62
Organ weight (g	Kidney	Left	7. 29 6. 75	7.02	7.02	7.30	9.05 6.30	7.68	7.01	7.08	6.91	6.84	6. 25 6. 70	6.48	7.70	7.29	7. 28 8. 50	7.89
Org	Tirror	רוגנו	62 89	74	68 73	71	94	77	72	73	64 66	65	55 76	99	74 78	92	85	83
	barr I		19. 15 21. 60	20.38	13.09	20.10	28. 55 13. 61	21.08	17.04 28.09	22. 57	18.36 22.00	20.18	13. 26 14. 51	13.89	16. 60 17. 85	17. 23	23. 26 14. 90	19.08
	Hoort	ilcait	14. 57 11. 94	13. 26	12. 25 13. 32	12. 79	16. 51 10. 50	13. 51	11. 62 11. 80	11.71	13. 15 17. 00	15.08	8. 95 14. 73	11.84	17. 70 13. 00	15.35	12. 35 14. 15	13. 25
	Thymis	1 11 y 111 de	0.99	3.37	6.55	5, 45	1.00 3.69	2, 35	3. 61 4. 19	3.90	2.86 3.05	2.96	4.50 1.95	3, 23	3.70	2.87	2, 26 3, 65	2.96
	Thy-	roids	0.53 0.52	0.53	0.35 0.66	0.51	0.46 0.54	0.50	0.40 0.26	0.33	0.12 0.55	0.34	0.74	0.74	0.65 0.52	0.59	0.43	0.47
	Sub- maxil-		2. 42 2. 34	2.38	2. 72 1. 92	2.32	2.66	2. 43	2.38	2.41	1.75 2.34	2, 05	1.72	1.79	1, 54 2, 07	1.81	2. 63 2. 10	2.37
	Brain	7	75	73	52 68	09	70 61	99	53	56	74 74	74	64	99	99 65	99	69	29
Body	weight	(kg)	4.70	4. 23	3.54	3, 53	5.17	4.21	3.23	2.99	4.44	4.32	2. 65 3. 60	3, 13	3,35	3, 50	3.70	3.71
	икеу Sex	юM	2 7	Mean	4 rc	Mean	8	Mean	10	Mean	111	Mean	13	Mean	15	Mean	18 19	Mean
	3		€0		(saline)	V	€0		100 mg/kg	N	€	T-1982	200 mg/kg	V	€	T-1982	400 mg/kg	4

3 months
for
-1982
Ή
with
intramuscularly
s injected
monkeys
b-eating
crab-
s in
an weights
ካ ለ
Relative org
13
Table

		7.7	1 able 15	nelative	ог вап w	weignts in		ung mo	nkeys inj	lecrea mr	crab-eating monkeys injected intramuscularly	lariy with		I -1982 for 3 months	ontns		
		•oN						14	Relative organ weight	organ we	ight (%)						
	хэС	кελ	٠.	Sub- maxil-	Thv-	ē	l			Kidney	ney		Pancre-	Adre-		Testis	tis
		noM	brain	lary glands	roids	I hymus	Heart	Lung	Liver	Left	Right	Spleen	as	nals	Ovaries	Left	Right
	€	1 2	1.60	0.05 0.06	0.011	0.02	0.31 0.32	0. 41 0. 58	1.68	0.16 0.18	0.15	0.17	0.17	0.010 0.015	•	0. 24 0. 13	0.25 0.13
Control	Z	Mean	1.74	0.06	0.013	0.09	0.32	0.50	1.75	0.17	0.16	0.15	0.17	0.013		0.19	0.19
(saline)	O+	5	1.47	0.08	0.010 0.019	0.19	0.35	0.65	1. 92 2. 07	0.20	0.14	0.33	0. 22 0. 16	0.014 0.014	0. 019 0. 012		
	×	Mean	1.70	0.07	0.015	0.16	0.37	0.57	2.00	0.21	0.18	0.28	0.19	0.014	0.016		
	€0	8	1.35	0.05	0.009	0.02 0.11	0.32 0.32	0.55	1.82 1.85	0.18	0.16 0.19	$0.13 \\ 0.16$	0. 21 0. 19	0.015 0.015		0.34 0.19	0.36 0.19
T-1982	Ä	Mean	1.62	90.00	0.013	0.07	0.32	0.49	1.84	0.19	0.18	0.15	0. 20	0.015		0.27	0.28
100 mg/kg	O+	9	1. 64 2. 12	0.07 0.09	0.012 0.009	$0.11 \\ 0.15$	0.36	0.53	2. 23 2. 70	0. 22 0. 26	0. 21 0. 26	0.19 0.40	0.16 0.22	0.014	0.008		
	M	Mean	1.88	0.08	0.011	0.13	0.40	0.78	2.47	0.24	0.24	0.30	0.19	0.020	0.013		100 m
	€0	11 12	1. 67 1. 76	0.04	0.003	0.06	0.30	0.41	1.44	0.15 0.16	0.16 0.16	0.13	0.15	0.010 0.010		0.03	0.03 0.09
T-1982	M	Mean	1.72	0.05	0.008	0.07	0.35	0.47	1.51	0.16	0.16	0.13	0.16	0.010		0.06	0.06
200 mg/kg	Ot	13	2. 42	0.06	0.028	0.17	0.34 0.41	0.50 0.40	2.08	0.24 0.19	0. 23 0. 19	0.29	0.23	0.023 0.013	0.011		
	Me	Mean	2.16	0.06	0.024	0.11	0.38	0.45	2.10	0.22	0.21	0. 22	0.18	0.018	0.018		
	€	15 16	1. 97 1. 78	0.05	0.019	0.11 0.06	0.53	0.50	2.21	0. 23	0.23	0.32	0.19	0.018 0.014		0.10	0.06 0.15
T-1982	Me	Mean	1.88	0.06	0.017	0.09	0.45	0.50	2.18	0.21	0.21	0.30	0.19	0.016		0.12	0.11
400 mg/kg	O l	18 19	1.76 1.86	0.07	$0.012 \\ 0.013$	0.06	0.33 0.38	0.63	2. 16	0.20	0. 20 0. 21	0. 12 0. 17	0.21 0.18	0.018 0.019	0.013 0.013		
	Ĭ	Mean	1.81	0.07	0.013	0.08	0.36	0.52	2.23	0.22	0.21	0.15	0.20	0.019	0.013		

Table 14 Absolute and relative organ weights in crab-eating monkeys injected intramuscularly with T-1982 for 3 months (Recovery study)

	tis	Right	16. 20			8.50		
	Tes	Left	16. 55			8.26		
		Ovaries		0.40			0.26	
Sub-lary Sub-lary Sub-lary Liver Lung Liver Left Right Right Spleen Ras								
	5.30							
	20100	Эргееш	18.10	4.12	11.11	5.03	7.31	6.08
ht (g)	lney	Right	8.90	6.04	7. 47		5. 22	6.53
an weig	Kid	Left	9, 61	6.87	8.24	6.67	6.85	6.76
Org	3 C 3 3 5 1	רואפו	115	22	85	92	61	69
	, i	N T T T T T T T T T T T T T T T T T T T	26.30	14.19	20. 25	18.27	16.29	17. 28
Thymus Heart Lung Liver Kight Spleen as Spleen as 1.75 21.74 26.30 115 9.61 8.90 18.10 11.05 0.70 4.69 11.90 14.19 55 6.87 6.04 4.12 5.21 0.58 0.40 2.72 15.98 18.27 76 6.67 7.83 5.03 5.63 0.66 0.73 9.82 16.29 61 6.85 5.22 7.31 4.96 0.59 0.59	12.90							
	1.73							
			0.92	0.26	0.59	0.37	0.70	0.54
	Sub- maxil-	lary glands	2.41	2.39	2.39	2.14	1.90	2.02
	Brain		78	63	71	22	60	29
			5.79	2.91	4.35	4.01	2.61	3, 31
	јкеу	ωM	<u>ო</u>	9	Mean	17	20	Mean
	XəS		€0	O+	Me	€	아	Me
				Control (saline)	,		T-1982 400_mg/kg	

		.oV						H	Relative organ weight (%)	rgan we	ight (%)						
	xəS	икеу	Brain	Sub- maxil-	Thy-	Thymis Heart		Duti I	3022	Kidney	ıey	251000	Pancre-	Adre-		Te	Testis
		юМ		lary glands		- 113 III d		rung	T A	Left	Right	паагдс	Spieen as nals	nals	Ovaries	Left	Right
	€	က	1, 35	0.04	0.016	0.03	0.38	0.45	1.99	0.17	0.15	0.31	0.19	0.012		0. 29	0.28
Control (saline)	O l	9	2.16	0.08	0.010	0.16	0.41	0.49	1.89	0.24	0.21	0.14	0.18	0.020	0.014		
	Me	Mean	1.76	0.06	0.013	0.10	0.40	0.47	1.94	0.21	0.18	0.23	0.19	0.016			
	€	17	1. 42	0.05	0.009	0.07	0.40	0.46	1.90	0.17	0.20	0.13	0.14	0.016		0.21	0. 21
T-1982 100 mg/kg	O l	20	2.30	0.07	0.027	0.03	0.38	0.62	2, 34	0.26	0.20	0.27	0.19	0.020	0.010		
	Me	Mean	1.86	0.06	0.018	0.05	0.39	0.54	2, 12	0. 22	0.20	0.20	0.17	0.018			

Table 15 Histological findings in crab-eating monkeys injected intramuscularly with	ng monk	teys i	in ject	ed in	tram	uscula	rly w		T-1982 for	82 fo		3 months	18					
	Control	lor		F	T-1982			-198	~		Ę	T-1982			Reco	Recovery		
dinnis divid	(sal	(saline)		100	100 mg/kg	kg	`&	ЭО Ш Э	200 mg/kg		400	400 mg/kg	κg	Cor	Control (saline)	T-1	T-1982 400mg/kg	
Sex	€0	OF	Ot	(0		O+	₩		O+		€		0+	€0	0+	€0	아	
Monkey No.	1 2	4	15	2	0,	9 10	11	12	13	14	15 1	16 18	3 19	က	9	17	20	
Liver: Focal cell infiltration in the parenchyma		+	+	+			+	1	1	+	+	1	l	l	+		1	
Focal granulation tissue in the parenchyma		1	ı	·		1	1	Ī	+	1			1	1	1	1_	1	
Lung: Focal pulmonary emphysema	+	1	ı						1				1			1	1	
Focal inflammatory adhesion of the pleura	1	-	١	+		‡	1	1	+		ì		1	-	+		1	
Bronchopneumonia with infiltration of eosinophilic leucocytes	1		1	1	-	‡ +	#	#	1	1			+			1	1	1
Spleen: Granuloma (?)							1	ı	+		·				1		1	1
Kidney: Focal necrosis and desquamation of the collecting		+	1	ļ		!	1	1	1	ı	ı		!		-			
tubular epiture		-		ı		1	1	1	1	ı	1	 			1		+	1
Stomach: Polypoid hyperplasia of the mucosa of the pylorus	+		1	1		1	+	I		l	1	<u> </u>	+	-		1		
Scar of granulation tissue			+	I	ı	1	1	1	Annahami	1	1	1	1					. 1
Large intestine: Parasitic granulation sac in the submucosa	1		+	1			+	+	1	+	+		+		+	+		. 1
Thymus: Atrophy of the cortex with decrease of lymphocytes	 	1	ı	#			-	1	1		ı	1		+			+	. 1
Testis : Immaturity	 	1	1	1	_		+	+	1	ı	+	-			-			. 1
Retroperitoneum: Parasitic granulation tissue	1		1	1				1	1	1	1	-		-	+	-	_	. 1
Muscle of injected area: Hemorrhage	++	#	+:	+			+	+	l	+ -	+ -	1	‡ -		‡		1	
Degeneration and necrosis Edema and infiltration			±	1 + 1	+ + +	+ + +	1 + 1	+ +		+ ‡ ‡	+	1 + 1	+					
FIDIOSIS		_	-		-	-					:	-		-	_	-	-	1

There were no significant changes in other organs.

Photo. 1 The large intestine from a female crab-eating monkey injected intramuscularly with T-1982 at 400 mg/kg/day for 3 months(No. 19). A sac of granulation tissue contained two bodies of parasite and necrotic tissue is seen in the submucosa.×40 H.E. staining

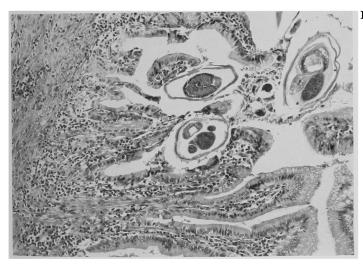


Photo. 2 A part of polyp found in the pylorus of the stomach from a male control crab-eating monkey (No. 2). Parasite bodies are attached on the mucosa. Infiltration of eosinophilic leucocytes are seen in the submucosa. ×100 H.E. staining

Photo. 3 A polyp protruded from the serosa of the stomach from a female control crab-eating monkey(No. 5). Calcification is occurred in the fibrous tissue of the polyp which is presumed to be a scar of parasitic granulation tissue. ×40 H.E. staining

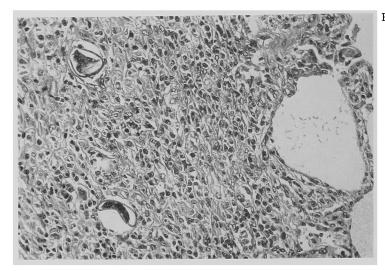


Photo. 4 The lung from a female crab-eating monkey given T-1982 intramuscularly at 100mg/kg/day (No. 10). Bronchopneumonia with infiltration of eosinophilic leucocytes and eggs of lung mite are seen. × 200 H.E. staining

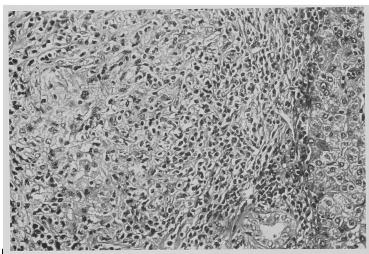


Photo. 5 The liver from a female crab-eating monkey given T-1982 intramuscularly at 200 mg/kg/day (No. 13). Granulation tissue is observed in the parenchyma. ×200 H. E. staining

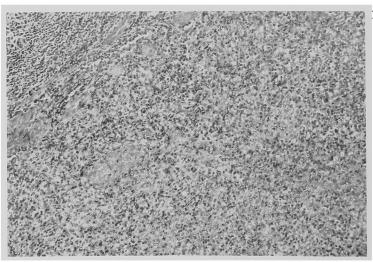


Photo. 6 The spleen from a female crab-eating monkey given T-1982 intramuscularly at 200 mg/kg/day (No. 13). Marked infiltration of histiocytes, eosinophilis and lymphocytes, appearing granulomatous lesion, is seen. ×100 H.E. staining

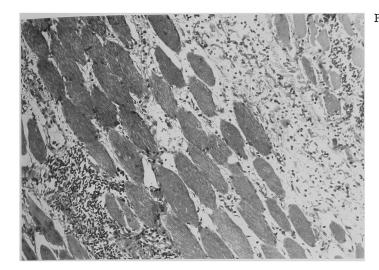


Photo. 7 The muscle of injected area from a female crab-eating monkey given T-1982 intramuscularly at 400 mg/kg/day for 3 months (No. 19). Marked hemorrhage, inflammatory cell infiltration and degenerative changes of muscle fibers are observed. ×100 H.E. staining

Photo. 8 The testis from a male crab-eating monkey given T-1982 intramuscularly at 400 mg/kg/day for 3 months (No. 16). No significant changes are observed. ×80 H. E. staining

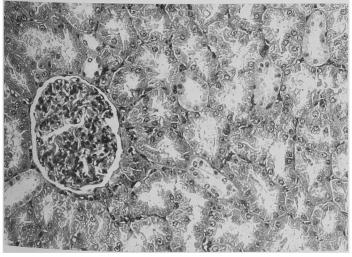


Photo. 9 The kidney from a female crab-eating monkey given T-1982 intramuscularly at 400 mg/kg/day for 3 months (No. 18). No significant changes are observed. ×200 H. E. staining

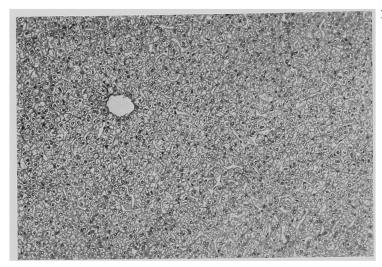


Photo. 10 The liver from a female crab-eating monkey given T-1982 intramuscularly at 400 mg/kg/day for 3 months (No. 19). No significant changes are observed. ×100 H. E. staining

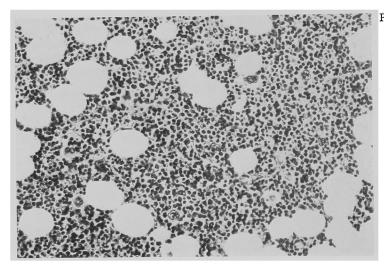


Photo. 11 The bone marrow from a female crab-eating monkey given T-1982 intramuscularly at 400 mg/kg/day for 3 months (No. 19). No significant changes are observed. × 200 H.E. staining

験では,対照群1例(No. 6♀)にのみ 屠殺時の麻酔薬 注射による新鮮な出血を認めただけであった。

他の動物の諸臟器には組織学的異常を認めなかった (Photo. 8~11)。

Ⅲ. 総括と考察

T-1982 のカニクイザルに対する亜急性毒性試験と回復試験を 20 頭のサルを使用し、100、200、400 mg/kg/day の 3 カ月間筋肉内投与で検討した。

全例が3ヵ月間投与に耐え,死亡例はなかった。400 mg/kg 投与群の一部のサルに注射直後の疼痛反応が観察された。3ヵ月間連続注射後の注射部位筋肉をみると,肉眼的には 400 mg/kg 投与群の4例中2例に限局した暗赤色または灰白色の変色部位を認め,組織学的にも全例に軽度から高度の出血,筋壊死,細胞浸潤,線維

化などの注射部位の筋障害が認められた。200,100 mg/kg 両投与群においても若干の筋障害がみられたが、その強さは生理食塩水投与対照群とほぼ同程度であった。しかし、回復試験例の投与部位筋肉には異常を認めなかった。

T-1982 の投与期間中,ほぼ投与量に比例した軟便の排泄が断続的に観察されたが,体重や摂餌量には影響を与えておらず,また休薬により正常便に回復した。これらの動物の消化管には組織学的異常がなかった。ただ,400 mg/kg 投与回復試験の1例だけは休薬後約1週間にわたって下痢をし,体重と摂餌量が一過性の減少を示したが,以後正常便に復し体重や摂餌量も回復に向かった。この例では剖検所見で腹壁ヘルニアが認められた。

尿検査、血液検査の結果には、薬剤投与に起因すると

思われる異常がなかった。血液化学検査では,血清のセルロースアセテート膜電気泳動による蛋白分画で,陽極側に易動度の速いアルブミン分画の出現が,投与量に比例して認められた。しかし,A/G をはじめ他の血液化学検査の結果には,薬剤投与に起因すると思われる異常がなかった。回復試験では,アルブミン分画の異常はほとんど回復していた。

T-1982 の血中濃度推移を 400, 100 mg/kg の両投与 群で検討したところ,検体の吸収速度定数が大きくなる 傾向がみられたが排泄速度定数,分布容積および半減期 には統計的な差はなかった。

制検所見や組織学的検査では、寄生虫感染による変化や寄生虫感染が疑われる変化が種々観察されたが、薬剤 投与に起因すると思われる変化は前述の注射部位の筋障 害以外には認められなかった。

T-1982 投与による軟便の出現は、ラット 3 カ月間皮下投与亜急性毒性試験やビーグル犬 3 カ月間静脈内投与亜急性毒性試験⁸⁾ では観察されておらず、カニクイザルに固有の変化であった。軟便出現の原因は明らかではないが、胆汁中から腸管に排泄された T-1982 が腸内細菌 機になんらかの変化を与えた ため に生じ た可能性がある。しかし、他の抗生物質 Cefoperazone⁴⁾、6059-S⁵⁾ などのサル毒性試験でも軟便や下痢の報告があることからみて、T-1982 に特異的な反応ではない。

血清アルブミンの陽極側への易動度の増加は、T-1982 のラット²⁾ やイヌに対する連続投与試験でも出現していたが、サルと同様可逆的な変化であった。この現象は、ヒトに Penicillin 系あるいは Cephalosporin 系抗生物質を投与した場合にも一過性に生じることが知られており^{4,7)}、薬剤によって血清蛋白が修飾され、陰性荷電が増加するために起きると推定されているものと同様の変化と思われる。

以上の結果から、本試験における最大無作用量をみた場合、軟便や血清アルブミンの易動度増加などの変化までを含めると、その最大無作用量は 100 mg/kg/day 以下になる。しかし、軟便の出現や血清アルブミン分画の

変化はなんらの臓器障害をも伴わず、しかも休楽によりすみやかに回復する変化であった。このことから、さらになんらかの組織学的障害を伴う最大量を最大安全量と規定してみた場合、本試験における最大安全量は、明らかな注射部位筋肉の障害を引き起こさなかった最大量である 200 mg/kg/day とするのが妥当であろうと思われた。

本試験の遂行にあたり、組織標本の診断とご校関を賜 わった金沢大学医学部病理学部第2講座,太田五六教授 に深甚なる感謝の意を表します。また、血中濃度の測定 とその薬動力学的解析にご協力いただいた当研究所中島 良文,渡辺泰雄,荒木春美の各氏に感謝致します。

文 献

- 正谷博之,中村昌三,河村泰仁,永井章夫,長沢峰子,高木淑子,和田直子,米田豊昭,高井 明: T-1982 の毒性試験(第1報)マウス,ラットおよびイヌでの急性毒性試験。Chemotherapy 30(S-3):232~241, 1982
- 2) 岩崎信一,柴田哲夫,佐藤 盛,中川重仁,米田豊昭,高井 明:T-1982 の毒性試験(第2報)ラット3カ月間皮下投与亜急性毒性試験。Chemotherapy 30(S-3):242~261, 1982
- 3) 米田豊昭,河村泰仁,柴田哲夫,佐藤 盛,永井 章夫,中川重仁,高井 明:T-1982 の毒性試験 (第3報)ビーグル犬3カ月間静脈内投与亜急性毒 性試験。Chemotherapy 30(S-3):262~292,1982
- 4) 米田豊昭,正谷博之,河村泰仁,永井章夫,柴田哲夫,佐藤 盛,岩崎信一,滝本陽子,長沢峰子,高井 明:Cefoperazone (T-1551)の毒性試験(第4報)カニクイザル1カ月間筋肉内投与亜急性毒性試験。Chemotherapy 28(S-6):252~267,1980
- 5) 村岡義博,矢原 功,吉崎敏夫,原田喜男:6059
 -S の赤毛ザルにおける亜急性毒性試験。Chemotherapy 28 (S-7):1072~1088, 1980
- 6) ARVAN, D. A; B. S. BLUMBERG & L. MELARTIN: Transient "bisalbuminemia" induced by drugs. Clin. Chim. Acta 22: 211~218, 1968
- 7) 橋本寿美子:セルロースアセテート 膜電気泳動法。 Medical Technology 7 (13):1161~1168, 1979

TOXICITY TESTS OF T-1982 (IV)
Subacute toxicity test in crab-eating
monkeys with the intramuscular
administration for three months

YASUHITO KAWAMURA, AKIO NAGAI, TETSUO SHIBATA, SHIGERU SATO, SHIGEHITO NAKAGAWA, JUNKO INABA, TOYOAKI YONEDA and AKIRA TAKAI Research Laboratory, Toyama Chemical Co., Ltd.

Twenty crab-eating monkeys (10 males, 10 females) divided into three T-1982 groups at dose levels of 400, 200 and 100 mg/kg/day and a saline control group were injected intramuscularly once a day, 7 days a week, for 3 months. Recovery study was performed in a T-1982 group at a dose level of 400 mg/kg/day and a control group (in each group, 1 male and 1 female monkeys) for 1 month after the termination of T-1982 treatment.

The following results were obtained.

- 1) There were no mortality and significantly toxic changes in growth curves, urinalysis, hematology and clinical chemistry.
- 2) Soft stool, which was dose-related, was observed intermittently in all monkeys receiving T-1982 throughout the entire 3 months period.
- 3) In cellulose acetate electrophoresis of serum, fast-moving albumin component was observed in all monkeys receiving T-1982. This change was dose-related and reversible in the recovery period.
- 4) In histological observation, there was no significant change except the muscular damage of injected site. This damage indicated the inflammatory reactions (necrosis, hemorrhage, edema, cell infiltration and fibrosis) and especially in monkeys receiving 400 mg/kg/day of T-1982, the severest injury was recognized.
- 5) Based upon the above results, the maximum safety dose level of T-1982 in monkeys was estimated to be 200 mg/kg/day.