複雑性尿路感染症治療における薬剤投与法の違いによる治療効果の検討

----Cefotetan (YM 09330) 1g×2 回/日 と 2g×1 回/日投与による比較試験----

熊 本 悦 明*•西 尾 彰 札幌医科大学泌尿器科

> 無 田 一 秀 旭川医科大学泌尿器科

辻 **一** 郎 北海道大学医学部泌尿器科

舟 生 富 寿 弘前大学医学部泌尿器科

大 堀 勉 岩手医科大学泌尿器科

土 田 正 義 秋田大学医学部泌尿器科

折 笠 精 一 東北大学医学部泌尿器科

给 木 騏 一 山形大学医学部泌尿器科

白 岩 康 夫 福島医科大学泌尿器科

小 川 秋 實 信州大学医学部巡尿器科

阿 曽 佳 郎 浜松医科大学泌尿器科

出 口 浩 一 東京総合臨床検査センター研究部

> 田 中 恒 男 東京大学医学部保健学科 (*:執筆者)

(昭和 58 年 3 月 25 日受付)

- 1) 複雑性尿路感染症に対し cefotetan 1g2 回/日,2g1 回/日5日間投与し、投与法の違いによる臨床効果、細菌尿、膿尿に対する効果の差を検討した。
- 2) 治療成績を検討しえた症例は 1g 2 回 69 例, 2g 1回 77 例であった。それらの背景因子を分析すると全体として高齢者が多くカテーテル留置例が 60%, 複数菌感染例 47% であり、かな

り複雑性が強い尿路感染症例であった。

ただ、2 群間には背景因子分布に有意差はなかった。 両弊における UTI 楽効評価基準による有効率をまとめると次表のごとくである。

The second secon	総合臨床効果	細菌学的効果	腹	尿	効	果
1g×2	67%	59%		57	%	
2g×1	57%	48%		52	%	

推計学的にはすべての効果において有意の差は認められていない。 しかし、総合臨床効果において1g 2回法がやや優っているかのごとき結果となっている。

主治医判定によると臨床効果は、1g2回で 59%、2g1回で 48% となっており、UTI 薬効評価 基準の上記の有効率より両群ともほぼ 10% 程度低くなっている。

3) 副作用および臨床検査成績において特配すべき具常は認められなかった。

最近第3世代の cephem 系抗生物質の開発が盛んになってきているが、その一連の流れの中で山之内製薬中央研究所でより新しいセファマイシン系抗生物質でFig. 1 のごとき構造式を有する cefotetan¹⁾ (YM 09330) が開発され臨床検討されるようになった。

Fig. 1 Chemical structure of cefotetan (YM 09330)

本剤は複雑性尿路感染症の原因菌として近年増加傾向ありとされている、Serratia、インドール陽性 Proteus、Enterobacter、Citrobacter などのグラム陰性菌に比較的強い抗菌活性を有するという data²⁾ がある。すなわち、各種細菌に対する MIC 50% および MIC 80% をまとめると Table 1 のごとくである。

一方本剤の排泄パターンは尿中排泄が良好で 24 時間で約 80% が尿中に回収されていることと血中濃度の半減期が約3時間とその持続時間が極めて長いため尿中濃度をかなり長時間有効濃度に保持できるという特徴⁽¹⁾をもっている。

その特徴を考えれば通常使用基準である1日2回の投与は必ずしも必要なく、1日1回投与でもかなり臨床治療効果が期待できるのではないかとも推測できる。そこで、その点を実際の臨床で検討する目的で1g1日2回投与と2g1日1回投与により複雑性尿路感染症を治療し両群間の治療効果、有効性をwell controlled studyにより比較評価したので、以下その成績について報告す

I. 対象および検討方法

1. 対象疾患および患者条件

対象疾患は尿路に基礎疾患を有する複雑性尿路感染症 とし、患者条件は UTI 薬効評価基準の対象規定にそった投薬前の尿所見が膿尿5 =/hpf 以上、細菌尿10 CFU/ml 以上のものとした。

治療対象症例は本研究に参加した 11 大学およびその 関連病院に、昭和 55 年 11 月から昭和 56 年7月の間 に入院した 16 歳以上の患者とした。

2. 供用薬剤

Cefotetan 1.0g を含有するパイアルと 2.0g を含有するパイアルを用い、1症例分を外観上識別不能な白糖に収め、白箱のおもてに薬剤の割付番号を付し、割付番号の若い順番に使用した。

薬剤の割付けは、あらかじめコントローラーが乱散表により無作為に行ない、薬剤照合表は、コントローラー が検討期間終了まで厳重に保管した。

薬剤の含量試験は、薬剤割付け後、コントローラーが 無作為に抽出した両薬剤について、臨床検討前後の2回 にわたって国立予防衛生研究所において行なった。

Table 1 Sensitivity distribution of clinical isolates

Organisms	MIC 50%	MIC
E.coli	0.39	0.78
K.pneumoniae	0.2	0.39
Indole positive Proteus	0.39	3.13
E.cloacae	6.25	100
C.freundii	1.56	100
Serratia	3.13	25

μg/ml,10⁶cells/ml (YM09330 New drug symposium²)

3. 投与方法

1g または 2g のバイアルを生食 100 ml に溶解し約 30 分間で点滴静注した。1日 2g 1回投与法は朝1回, 1日 1g 2回投与法は朝夕 2回の投与を行なった。

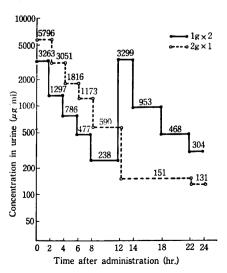
4. 臨床効果判定

先に述べた患者条件に違反した症例、投薬期間中に他 の抗菌剤が併用された症例、その他効果判定委員会にお いて除外脱落と認められた症例は脱落として臨床効果の 判定対象より除外した。

臨床所見の検討は投薬開始日と5日間投薬終了後の翌日および翌々日の3回にわたり尿中白血球および細菌所見を対象として行なったが臨床効果判定は UTI 研究会の薬効評価基準に従い5日間投与翌日の膿尿と細菌尿の所見についてのみ施行した。

また、主治医による総合判定もそれぞれの症例において行ない、上述の評価成績の比較検討を行なった。なお、主治医判定は excellent, good, fair, poor の 4 段階評価を用いた。

5. 分離菌の同定および MIC の測定


細菌は輸送用寒天培地(ウリカルト)に尿を drip したものを 東京総合臨床検査 センター研究部に 送り, 同定、MIC 測定を行なった。

6. 有用性および副作用の検討

薬剤の有効性と副作用などを総合して、治療担当医が 有用性を判定した。この場合、現時点で最も望ましいと 考えられる抗生物質を 100 点とし、1 症例ごとにどのく らい望ましさを満たしているかで評価することとした。

副作用については除外脱落症例も含めて可能な限り検 討を行なった。

Fig. 2 Concentration of cefotetan in urine

7. 統計的解析

結果の解析は、順序量に関してはU検定、分割表に関しては YATES の修正つき X⁸ 検定、FISHER の直接法、関連については SPEARMAN の順位相関を用いた。危険率は両側を採用し、有意水準は P<0.05 をもって差ありとした。

II. 成 續

1. 供用薬剤の含量試験

臨床検討開始前および終了後の 2回に わたって 行なわれた両薬剤の 含量試験の 結果では、 いずれも 規定の $90\sim120\%$ の範囲内にあり基準に合致するものであることが確認された。

尿中薬剤濃度の 24 時間における消長 (Fig. 2)

本剤 1g 朝夕2回投与の場合,2g 朝1回投与の場合 との尿中薬剤濃度の24時間の経過中の消長を健常成人 のvolunteer 各4名において検討した。

Fig. 2 に示すごとく、2 g 投与群では、ピーク値 5,796 μ g/ml となり夜間尿中では濃度が 151 μ g/ml、翌 朝の尿でも 131 μ g/ml となっている。その濃度は尿中分離菌 MIC の分布からみてかなり高いものであり臨床効果も充分期待できるものと推定した。1 g 2回投与群ではピーク値は 3,263 μ g/ml で 2 g 投与群のほぼ半分と低いが、尿中最低濃度(次回注射直前の 8~12 時間尿)は 238 μ g/ml と、2 g 1回投与群のほぼ 2倍になっている 2 。

Fig. 3 Number of cases subject to analysis

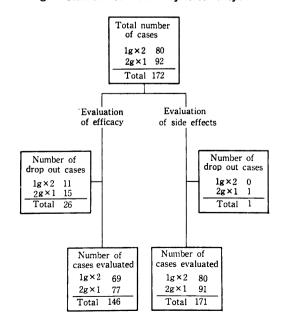


Table 2 Background characteristics I

	Characteristic		1g×2	2g×1	Statistical analysis
	M	ale	51	64	$x^2 = 1.843$
Sex	Fen	nale	18	13	N.S.
	16~	-19	0	4	
	20~	- 29	2	2	
	30~	-39	3	2	Z=0.378
Age	40~	-49	10	4	N.S.
	50~	-59	12	9	N.S.
	60~	- 69	13	20	
	70~	-79	29	36	
	-	-<40	6	5	
Body weight	40≤~	-<60	37	49	Z = 0.775
(kg)	60≤~	_	23	19	N.S.
	Unk	nown	3	4	
	Cys	titis	37	38	x ² =1.500
Diagnosis of	Pyelon	ephrit is	28	35	(df = 3)
infection	Post-pros	tatectomy	3	4	N.S.
	Oth	ners	1	0	N.S.
		lst group	19	22	
Type of	Single	2nd group 3rd group	2	2	$x^2 = 1.090$
infection	infection		6	5	(df = 5)
(UTI)		4th group	.11	9	NS.
(grouping)	Mixed	5th group	21	25	N.S.
	infection	6th group	10	14	
Catheter	Not in	ndwelt	29	30	$x^2 = 0.142$
Catheter	Ind	welt	40	47	N.S.
	±(5-	~9)	3	7	
Grade of pyuria	+(10	~29)	21	24	Z=1.491
(cells / HPF)	#		10	18	P=0.1359
(33.10)	#		35	28	
	Normal		57	68	x ² = 0.0722
S-Cr	G-Cr Abnormal		5	5	N.S.
	Unknown			4	N.5.
Function of	No	rmal	55	69	$x^2 = 2.787$
the kidney	Abne	ormal	14	8	P=0.0950

Table 3 Background characteristics II (Clinical isolates)

Organ	nisms	Drug	No. of strains	MIC 50% (µg/ml)	MIC 80% (µg/ml)	Test
Ť		1g×2	17	400	400	
	S.faecalis	2g×1	14	400	800	N.S.
G(+) cocci	Ott - CDC	1g×2	5	25	50	NC
Ŧ	Other GPC	2g×1	7	6.25	50	N.S.
3 <u> </u>	Subtotal	1g×2	22	200	400	
	Subtotal	2g×1	21	200	800	_
	E.coli	lg×2	15	0.1	0.19	NC
	E.con	$2g{ imes}1$	12	0.1	0.19	N.S.
	Klebsiella	lg×2	10	0.19	0.39	NC
	Aleosiella	2g×1	9	0.1	0.19	N.S.
	Dust	1g×2	13	1.56	3.13	D 00075
	Proteus	2g×1	22	0.39	1.56	P=0.2377
	Enterobacter	1g×2	1	50	50	D - 0.0101
_s	Citrobacter	$2g\times 1$	9	3.13	50	P = 0.0191
or lo	Serratia	1g×2	20	25	50	P=0.5435
G(-) rods	Serrana	2g×1	27	25	200	P=0.5435
٦٦	n	1g×2	7	400	800<	D 0.2466
	P.aeruginosa	$2g\times 1$	13	400	800	P=0.3466
	Other	1g×2	11	100	200	P=0.0217F
	Pseudomonas	2g×1	3	50	50	F=0.0217F
	Other	1g×2	14	50	400	P=0.1505
	NF-GNR	$2g\times1$	8	100	100	F = 0.1303
	Subtotal	lg×2	91	12.5	100	
	Subtotal	$2g\times1$	103	3.13	200	
	Tatal	1g×2	113	25	200	
	Total	$2g\times1$	124	25	200	

3. 検討症例

楽剤投与を 行なった 複雑性尿路感染症症例 は Fig.3 に示したように 1g 2回群 80 例, 2g1回群 92 例, 合計 172 例であった。 除外脱落症例 が 1g2回群に 11 例, 2g1回群に 15 例あり、背景因子の検討、臨床効果の判定がなされたのはそれぞれ 69 例と 77 例である。

4. 背景因子

治療効果の検討対象とした 1g2回群 69 例, 2g1回 群 77 例について各種背景因子をまとめると Table 2の ごとくになる。

全体として、高齢者が多いこと、カテーテル留置例が 60%、複数菌感染例が 48% であるなど、かなり複雑性 の強い尿路感染症群であるといえるが、ただ2群間には それら背景因子の分布に有意差はなかった。

5. 分離菌菌種分布

対象症例から分離された 菌の 種別分布を まとめると Table 3 のごとくになる。 2 群間で、Enterobacter & Citrobacter、other Pseudomonas の分布に有意差を認めたが全体としては菌種分布に著しい差はないと考えられる。

Enterobacter, Citrobacter, Serratia, P. aeruginosa, NF-GNR のいわゆる弱毒菌群の、全分離菌種数に対して占める割合は 116/237 と 50% であった。

分離菌の菌種別 MIC 分布に両投与群間で差がないことから、両群を合わせた 菌種別 MIC 分布を Table 4 (A,B) に示したが、全分離菌株に おける MIC 50% (10^6 CFU/ml) は $25~\mu$ g/ml であった。この data や弱毒菌が多いことなどは今回の対象例の尿路感染症の複雑性の高さを示すもう一つの証左といえる所見である。

6. 臨床効果

(i) UTI 薬効評価基準による総合臨床効果判定

UTI 薬効評価基準による 総合臨床効果判定と さらに 対象症例をタイプ別に分類して効果を検討したものをま とめる と Table 5,6,7,8 の ごとく であった。 これら Table 内における 2 群間の治療効果比較成績では、すべて有意差はなかった。

以上の data を2群間比較という立場から総合治療効果をまとめ直して検討すると Table 9 のごとくになる。

有効率は 1g2 回投与群 67%, 2g1 回投与群 57% であり、やや 1g2 回投与群が良好な成績を示してはいるが推計学的には有意差は認められない。

なお、臨床効果をカテーテルの有無に分けて検討してみると、カテーテル非留置例では 1g2回投与群の有効率 79%、2g1回投与群 63% であり、カテーテル留置例1g2回投与群 58%、2g1回投与群 53% であった。ともに推計学的に2群の有効率間に有意差は認められな

かったが、カテーテル非留置例においては 1g 2回投与 群の有効率は 2g 1回投与群より 15% も高いという所 限を得た。

(ii) 細菌尿効果および 膿尿効果 (UTI 薬効評価基 単による)

総合臨床効果判定の指標となる細菌尿効果および護尿 効果をそれぞれ検討すると次のごとくになる。

細菌尿効果 (Table 10) を両群間で比較すると、有効率でほぼ 10% の差が認められたがやはり推計学的に有意差は認められない。一方、 護尿効果 (Table 11) では、ほとんど両群間に差は認められていない。ただ、細菌尿、腹尿効果ともに、カテーテル非留置例においては1g 2回投与群の方がやはり推計学的有意差はないが有効率が高くなっていることが認められる。

なお治療により菌交代を起こした症例の治療前後の無菌所見および膿尿所見をまとめると Table 12 のごとくになる。

Cefotetan の抗菌活性の特徴を示すように菌交代で出現した細菌の 2/3 は S. faecalis で残りの 1/3 は Pseudomonas 属であった。これら細菌が臨床的に、すなわち病原菌としてそれぞれの症例に意味を持つか否かは今後検討を要する点と考える。

(iii) 主治医判定による臨床効果判定

各症例において、それぞれの主治医が行なった臨床効果判定をまとめると、Table 13 のごとくになり、excelent および good 群を有効とすれば 1g 2回投与群 9%、2g 1回投与群 48% の有効率となっている。

この主治医判定と前に述べた UTI 薬効評価基準による成績との比較をまとめると Table 14 のごとくである。 UTI 薬効評価基準では両群合わせた有効率が 62% となり主治医判定の有効率 52% より約 10% 高くなっている。その差のほとんどは細菌尿所見の改善があって農尿所見が不変のものを主治医は無効と判定する傾向がつよいために由来するといってよい。

(iv) 細菌学的効果

分離菌の総菌株の MIC 累積パーセント曲線をえがく と Fig. 4 のごとくなり 2 群間に 有意差は 認められなかった。

なお、治療前分離菌で 100 µg/ml 以上の MIC を示す ものは、ほぼ 30% であるのに比べ、治療後に分離され た残存菌または新出現菌ではほとんどが 100 µg/ml 以上 のものであることが示されている。この data は今回の 治療法により消失した菌は MIC が 100 µg/ml 以下の菌 がほとんどであるということになる。

1g 2回投与群および 2g 1回投与群両群の治療 による分離菌の変動を菌種別にまとめると、Table 15

Table 4(A) Distribution of sensitivity of isolates (106 CFU/ml)

	Included assessing	No.	T	Г	T	_		T	1		1					,	·,				
,	Isolated organisms	of	0.025	0.05		0.19	ရွ	0.78	1.56	3.13	6.25	12.5							8	MIC50	MIC 80
		strains	ĕ	0	0.1	0	0.39	0	=	8	9	12	25	ಜ	8	200	408	800	۸	%	%
S.	faecalis	31	T		T		T	T	\vdash		┪	\vdash	\vdash	-	4	8	9	7	3	400	800
	Saureus	4		Γ				Г			2		1	1						6.25	50
ည	Sepidermidis	4	1							ŀ	2		1	1	l					6.25	50
3	S.faecium	0	l																		1
Other GPC	β-Streptococcus	1			1						1									6.25	6.25
Ō	GPC	2											1			1				25	200
	Subtotal	11									5		3	2		1				25	50
	coli	26	L	3		10		1	1											0.1	0.19
Kleb- siella	K.pneumoniae	16		I	6	5	1	-		1				1		1				0.19	0.39
× .ÿ	K.ozaenae	1	_		<u> </u>	1				_										0.19	0.19
	P.vulgaris	3		1	1					1										0.1	3.13
	P.morganii	12	1		2	1	1	3	1	2			1	1						0.78	1.56
SH	P.mirabilis	5		3	2															0.05	0.1
Proteus	P.inconstans	3			1			1						1						0.78	50
7	P.rettgeri	8					2		4	1			1							1.56	3.13
	Proteus sp.	2		_		1	_	ļ.,	Ļ	_	ļ	_	1	_						0.19	25
	Subtotal	33	_	4	6	2	3	4	5	4	_	_	3	2						0.78	3.13
terobacter Citrobacter	E.aerogenes	3				1		1		1										0.78	3.13
oba rob	E.cloacae	4					1			١.	1			1		1				6.25	200
	C.freundii Subtotal	3	-				_	-		1	-			2	_					50	50
	rratia (S.marcescens)	10				1	1	1	0	2	1	0		3	-0	1	_			3.13	50
	alvei	2							2	6	4	2	9	9	2	5	3		1	25	100
	aeruginosa	18	-		_			-					2	-	-	-	_			25	25
	P.putida	5						-		_		1		1	1	5	5	3	4	100	800
non	P.maltophilia	3										1		1	,	2	1			200	200 200
don	P.cepacia	4										1		1	1	2	1			50	400
Other Pseudomonas	Subtotal	12	\vdash				_	-				3		2	2	3	2	-	\dashv	100	200
	A.calcoaceticus	6			-							3	-	1	4	-	1			100	100
	A.bronchicanis	4												1	1	1	1	2		400	800
	A.faecalis	0													l	1		۱ -		100	000
	A.denitrificans	i					1													0.39	0.39
	A.xylosoxidans	0					-										ļ			0.00	0.00
~	A chromobacter sp.	1			l									1	1					100	100
N.S	A.hydrophila	1				ļ	1							-				- 1	100	0.39	0.39
Ę	F.meningosepticum	1											ı	1	-					50	50
-	Flavobacterium sp.	2			İ									1	1		Ì			50	100
Other NF-GN	A.viridans	1						1									1			0.78	0.78
0	GNR	0																			
	Subtotal	17	\dashv			7	2	1						3	6	1	2	2	7	100	200
	9,00			1																	
	GPC total	42									5		3	2	4	9	9	7	3	200	400
	GNR total	178			23		7	7	8	13	5			\rightarrow		16		5	5	6.25	100
	Total	220		8	23	19	7	7	8	13	10	5	17	22	15	25	21	12	8	25	200
																					 ,

^{•¡}MIC 75% <をもってMIC 80% とした。

Table 4(B) Distribution of sensitivity of isolates ($10^8 \ CFU/ml$)

	Isolated organisms	No. of strains	0.025	0.02	0.1	0.19	0.39	0.78	1.56	3.13	6.25	12.5	25	50	100	200	400	800	>800	MIC50	MIC 80
S.	faecalis	31	<u> </u>			1	T	1		1			\vdash	-	<u> </u>	3	5	7	16	800	>800
	S.aureus	4				T		T			T	Г	2	1	1		1			25	400
ပွ	S.epidermidis	4											2		1	1				25	200
35	S.faecium	0																			
Other GPC	β -Streptococcus	1										1			l					12.5	12.5
ŏ	GPC	2												1	ļ				1	50	>800
	Subtotal	11										1	4	2	1	1	1		1	50	100
	coli	26			5	9	7	3		1	1									0.19	0.39
Kleb- siella	K.pneumoniae	16			2	3	6	2				1				1			1	0.39	0.78
Si.	K.ozaenae	1					1													0.39	0.39
	P.vulgaris	3		1		1						1								0.19	12.5
	P.morganii	12				2		1	3	2		1	1		1		1			1.56	25
sn	P.mirabilis	5			3	2														0.1	0.19
Proteus	P.inconstans	3					1		1							1				1.56	200
Ь	P.rettgeri	8							1	1	3	1	1			1				6.25	25
	Proteus sp.	2						1								1				0.78	200
	Subtotal	33		1	3	5	1	2	5	3	3	3	2		1	3	1			1.56	12.5
cter cte	E.aerogenes	3					1					1	1							12.5	25
Enterobacter & Citrobacter	E.cloacae	4							1						1			1	1	100	>800
	C.freundii	3										1				1	1			200	400
	Subtotal	10		_			1		1			2	1		1	1	1	1		25	400
	rratia (S.marcescens)	43									2	2	5	4	2	10	7	1	10	200	800
	alvei ·	2	_													1	1			200	400
	neruginosa	18		_		-													16	>800	>800
ona	P.putida	5												1		1	1		2	400	>800
r dom	P.maltophilia	3												1				1	1	800	>800
Other Pseudomonas	P.cepacia Subtotal	4	_		_		_		_		_	_		1			2		1	400	>800
0 4	A.calcoaceticus	12		-			_	-		_	_			3		1	3	1		400	>800
	A.bronchicanis	6						ĺ								1		4		800	800
	A.faecalis	4 0																	4	> 800	>800
	A.denitrificans	1						,										İ		0.50	
	A.xylosoxidans	0						1											- 1	0.78	0.78
2	Achromobacter sp.	1					ĺ							1			,		ĺ	400	400
Z	A.hydrophila	1					ĺ			1							1			400	400
Other NF-GN	F.meningosepticum	1	-							1				İ			,		OM.	3.13	3.13
~	Flavobacterium sp.	2												ĺ		1	1			400	400
her	A.viridans	1	1			1		,							1		2			400	400
ŏ	GNR	0						1												0.78	0.78
-	Subtotal	17	-	+	+	-	-	2	-	1		-		-		1	-	4		000	> 000
	Gustotai	11						4		1					L	1	4	4	э	800	>800
	GPC total	42	Т	Т	\neg	Т	\neg	Т	7	-т	-	1	4	2	1	4	6	7	17	800	>800
	GNR total	178		1	10	17	16	9	6	5		8	- 1	- 1		18		9	- 1	50	>800 800
		220			10 :			-	<u> </u>	<u></u>	-	١	9		* 1		٠,	9	54	50	000

^{*}MIC75% <をもってMIC80% とした。

Table	5	Overall	clinical	efficacy

		Device		Pyuria		Effect on
		Drug	Cleared	Decreased	Unchanged	bacteriuria
	Eliminated	1g×2	14	5	16	35(51%)
	Eliminated	$2g\times1$	9	7	17	33(43%)
.લં	Decreased	1g×2	1	5	0	6(9%)
Bacteriuria	Decreased	$2g\times1$	2	1	1	4(5%)
acte	Donland	1g×2	3	2	7	12(17%)
Ä	Replaced	2g×1	4	3	5	12(16%)
	TT1	1g×2	6	3	7	16(23%)
	Unchanged	2g×1	7	7	14	28(36%)
Efficacy on pyuria		1g×2	24(35%)	15(22%)	30(43%)	69
		$2g\times1$	22(29%)	18(23%)	37(48%)	total 77

 Drug	Excellent	Moderate	Poor	Overall effectiveness rate	U-test
1g×2	14	32	23	46/69(67%)	Z=1.509
$2g\times1$	9	35	33	44/77(57%)	P = 0.1313

Evaluation of efficacy on bacteriuria

Drug	Eliminated	Decreased	Replaced	Unchanged	Total	U-test
1g×2	35 (51%)	6 (9%)	12(17%)	16(23%)	69	Z=1.450
	41(5	9%)				2 11100
2g×1	33 (43%)	4 (5%)	12(16%)	28(36%)	77	P=0.1470
. g	37(4	8%)				

(A,B) のごとくになる。前述の Fig.4 に見られるごと く残存菌の全体としての MIC 分布に, 両群間の差はほ とんど認められていない。

また、Table 15 (A,B) に見られるごとく分離菌 elimination rate も 1g 2回投与群 76.1%、2g1 回投 与群 71.0% と有意の差はなく、菌種における細菌学的効果および治療後出現頻度も両群間に有意差はなかった。

〔治療前 max. MIC 値と治療効果〕

ここまでの細菌学的分析では、1g 2回群と 2g 1回群との間にやや 差がある という 臨床所見を 説明できない。そこで、治療前の max. MIC の値の細菌学的効果の

間の検討を行なってみた。max. MIC とは症例から分離される細菌が複数の場合には、それらのうち MIC が最高の菌をその症例分離株の代表 MIC として採用したものである。それをまとめたものが Fig. 5 (A, B) である。治療によって消失したものと消失しなかったものに分け、消失しなかった残存菌の MIC を、図中右の欄に記入した。図中左側に治療前の max. MIC を、一般臨床検査で用いられる disc 感受性テストの 所見に合わせて大別して、 $0.025\sim3.13~\mu g/ml:(#),6.25\sim12.5~\mu g/ml:(#),25\sim50~\mu g/ml:(+),100~\mu g/ml 以上:(-)としてそれぞれのレベルの細菌消失率をまとめてある。その細菌消失率を 両投与群別に 比較して みると <math>50~\mu g/m$

Table 6 Overall clinical efficacy classified by type of infection

G	Froup	Drug	No.of cases (% of total)	Excellent	Moderate	Poor	Overall effectiveness rate (%)	U-test
	1-4	1g×2	19(27.5)	3	10	6	68	Z=0.545
	1st group	$2g\times1$	22(28.6)	3	10	9	59	N.S.
	01	1g×2	2(2.9)	0	2	0	100	
	2nd group	2g×1	2(2.6)	0	2	0	100	
Single	2-1	1g×2	6(8.7)	2	4	0	100	Z = 0.354
infection	3rd group	2g×1	5(6.5)	1	4	0	100	N.S.
	441	1g×2	11(15.9)	3	5	3	73	Z = 0.932
	4th group	$2g \times 1$	9(11.7)	2	2	5	44	P = 0.3516
	Subtotal	1g×2	38(55.1)	8	21	9	76	Z=1.179
	Subtotal	2g×1	38(49.4)	6	18	14	63	P = 0.2382
	Eth	1g×2	21(30.4)	4	6	11	48	Z = 0.430
	5th group	2g×1	25(32.5)	1	11	13	48	N.S.
Mixed	Cally annual	1g×2	10(14.5)	2	5	3	70	Z = 0.604
infection	6th grop	2g×1	14(18.2)	2	6	6	57	N.S.
	Subtotal	1g×2	31(44.9)	6	11	14	55	Z = 0.721
	Subtotai	2g×1	39(50.6)	3	17	19	51	P = 0.4712
т	`otal	lg×2	69	14	32	23	67	Z=1.509
1	otaí	2g×1	77	9	35	33	57	P=0.1313
		1g×2	29(42.0)	7	16	6	79	Z=1.293
Withou	t catheter	$2g\times1$	30(39.0)	5	14	11	63	P = 0.1960
		$\frac{2g \times 1}{1g \times 2}$	40(58.0)	7	16	17	58	Z = 0.761
With	catheter	$2g\times1$	47(61.0)	4	21	22	53	P = 0.4464

N.S.:P > 0.5

ml 群以下では $50\sim60\%$ の菌消失率であり、我々の行なった 両投与方法による 治療効果の 差は認められ なかった。ただ $100~\mu g/ml$ 以上の菌の菌消失率は 1g~2 回群では 41.2% であるのに対し、2g~1 回群は 19.4% とかなり低くなっており、推計学的に有意傾向がみられた。この data から考えるとするならば $100~\mu g/ml$ 以上の細菌に対しては 2g~1 回投与群がかなり治療効果が悪いということになる。この所見の差が前述の臨床成績で、両投与群間に全体として有意差はないが、1g~2 回群の方がやや成績が良かったことの説明になっていると考えられる。

なお, 100 μg/ml 以下の低 MIC 群で治療後, 菌が残存している場合, その残存菌は明らかに 治療前の MIC

より高い MIC の細菌が検出されており、flora change が起きていることが示されている。これらの治療後出現 菌は治療前はおそらく少数でありすぎて技術的チェック されていなかった minor flora の細菌が、高 MIC のため残存し得て、major flora 消失後に、代わって増殖した ものであろう。

[治療中止後の菌数変動―翌日, 翌々日の所見]

本薬剤による治療を行なって終了した後の尿中菌数の変動をまとめると、本薬剤の尿中濃度がかなり長時間にわたり保たれているための影響と考えられる所見が得られた。すなわち、治療中止翌朝および翌々朝の分離菌数を検討してみると、Fig.6 (A, B, C) のごとくになる。残存菌のほとんどは図に付記したごとく Enterobacter,

Table 7	Efficacy	on	bacteriuria	classified	bу	type	of	infection
---------	----------	----	-------------	------------	----	------	----	-----------

Gr	oup	Drug	No, of cases (% of total)	Eliminated	Decreased	Replaced	Unchanged	Eliminated+ Decreased (%)	U-test
	1.4	1g×2	19(27.5)	9	3	4	3	63	Z = 0.747
	1st group	2g×1	22(28.6)	9	2	5	6	50	P=0.4551
	0-1	lg×2	2(2.9)	2	0	0	0	100	
	2nd group	2g×1	2(2.6)	2	0	0	0	100	_
Single	3rd group	lg×2	6(8.7)	5	0	1	0	83	Z = 0.000
infection	Sra group	2g×1	5(6.5)	4	0	1	0	80	N.S.
	4th group	1g×2	11(15.9)	7	1	1	2	73	Z = 1.195
	4th group	2g×1	9(11.7)	4	0	0	5	44	N.S.
	Subtotal	lg×2	38(55.1)	23	4	6	5	71	Z=1.338
	Subtotal	2g×1	38(49.4)	19	2	6	11	55	P = 0.1807
	5th group	lg×2	21(30.4)	7	1	5	8	38	Z = 0.757
	5th group	2g×1	25(32.5)	7	1	4	13	32	P = 0.4492
Mixed	6th group	1g×2	10(14.5)	5	1	1	3	60	Z = 0.032
infection	oth group	2g×1	14(18.2)	7	1	2	4	57	N.S.
	Subtotal	1g×2	31(44.9)	12	2	6	11	45	Z = 0.921
	Subtotal	2g×1	39(50.6)	14	2	6	17	41	P = 0.3573
Τ,	otal	1g×2	69	35	6	12	16	59	Z = 1.450
		2g×1	77	33	4	12	28	48	P = 0.1470
Without	catheter	1g×2	29(42.0)	19	2	3	5	72	Z = 0.905
Without	Cauletei	2g×1	30(39.0)	17	1	3	9	60	P=0.3653
With car	thatar	1g×2	40(58.0)	16	4	9	11	50	Z = 1.055
with ca	merei	2g×1	47(61.0)	16	3	9	19	40	P = 0.2915

N.S.:P > 0.5

Citrobacter, Serratia, Pseudomonas, NF-GNR および S. faecalis を主とする GPC であったが翌朝より翌々朝 の方が明らかに 菌数が 増加傾向に あることが 認められる。1g 2回群では翌々朝増菌数は 27/46 (58.7%), 2g 1回群では 38/55 (69.1%) に認められ 2g 1回群において翌々日増菌傾向がやや強く見られたが推計学的には有意の差としては認められていない。

このように翌朝よりも翌々朝の方が、菌数が半数以上 も増加していることは、臨床効果判定上問題なしとしない。

翌朝の検査時の尿中薬剤濃度が、1g 2回群ではなお $300 \mu g/ml$ 、2g 1回群でも $100 \mu g/ml$ は残存しており、それが尿中細菌の活性をなおおさえていたのに、薬剤が

完全消失する翌々朝になると、細菌が活性を取り戻し菌 数を増加してくるものと考えられる。

long acting の薬剤の細菌学的効果判定にはこの点を 考慮しておく必要があるのではないだろうか。

さらにもう一つ,尿中細菌数を検索する時に,尿をウリカルトにかけるが,尿中に残存している薬剤がウリカルトに浸透し,細菌の発育に影響を与えている可能性がある。

そのため、次のような検討を行なった。 Cefotetan 500, 100, $20 \mu g/ml$ をウリカルトにかけ Table 16 (A, B) のごとく、細菌を $10^6/ml$ 接種した場合の発育度を検討した。ウリカルト培地での cefotetan 濃度は Table 16 (A) のごとくであると考えられる。 Table 16 (B) のご

Table 8 Efficacy on pyuria classified by type of infection

Gi	roup	Drug	No. of cases (% of total)	Cleared	Decreased	Unchanged	Cleared + Decreased (%)	U-test
		lg×2	19(27.5)	4	5	10	47	Z = 0.496
	1st group	2g×1	22(28.6)	6	6	10	55	N.S.
		1g×2	2(2.9)	0	1	1	50	Z = 0.500
	2nd group	2g×1	2(2.6)	0	0	2	0	N.S.
Single		lg×2	6(8.7)	3	1	2	67	Z = 0.580
infection	3rd group	2g×1	5(6.5)	1	2	2	60	N.S.
	4.4	lg×2	11(15.9)	4	4	3	73	Z=0.770
	4th group	2g×1	9(11.7)	3	1	5	44	P = 0.4416
	Subtotal	1g×2	38(55.1)	11	11	16	58	Z = 0.570
		2g×1	38(49.4)	10	9	19	50	N.S.
	5th group	lg×2	21(30.4)	8	3	10	52	Z=0.178
		2g×1	25(32.5)	7	7	11	56	N.S.
Mixed	C41	lg×2	10(14.5)	5	1	4	60	Z=0.578
infection	6th group	2g×1	14(18.2)	5	2	7	50	N.S.
	0.14.4.1	1g×2	31(44.9)	13	4	14	55	Z=0.512
	Subtotal	2g×1	39(50.6)	12	9	18	54	N.S.
T	`otal	lg×2	69	24	15	30	57	Z=0.727
	otai	2g×1	77	22	18	37	52	P=0.4674
Withou	t catheter	1g×2	29(42.0)	12	7	10	66	Z=1.307
Williou	t catheter	2g×1	30(39.0)	9	5	16	47	P=0.1912
With ca	athatar	1g×2	40(58.0)	12	8	20	50	Z=0.216
with Ca	atneter	2g×1	47(61.0)	13	13	21	55	N.S.

N.S.:P>0.5

とく尿中濃度 $20 \mu g/ml$ でさえ MIC の低い菌では発育 は阻止され MIC が 200, $800 \mu g/ml$ の菌に おいてのみ 発育をみている。しかもその菌数は低くなっている。

このことは、このような long acting drug の治療後 の成績を検討する場合、残存尿中薬剤の濃度も考慮して 尿中細菌効果を検討しないと尿中に細菌がなお残存して いるにもかかわらず菌消失や低菌数に判定してしまうことを示唆している data といってよい。

以上のような data もあるので MIC の低いと考えられる強毒菌群とされる GNR (E. coli, Klebsiella, Proteus) において治療中止後翌朝, 翌々朝の data を検討したところ幸いにしてそれらの 菌においては 翌々朝の菌 増加はわずかに 4 例でわずか 3% のみであった。この

data と Table 4 (A) (B) に示される MIC の高さを合わせ考えると本検討においては残存尿中濃度により強毒菌数出現率にはあまり影響はなかったと考えられ、強素菌への治療効果の大勢には影響はなかった。それらの無菌はむしろ尿中からすでに完全に消失されてしまっていたのであろう。

ただ MIC の高い薬剤に抵抗している細菌群にみられた発育抑制効果は、現実の data に著しい影響を与えていることは上述した通りであり、今後の治療効果判定上考慮すべき点といえよう。欧米での複雑性尿路感染症治療効果判定には、投与終了後 1 週間後の 菌敷を check するのが一般化しており、long acting 薬剤が多くなりつつある現状では今後そのような方法も考慮される必要

Table 10 Evaluation of efficacy on bacteriuria

Table 9 Overall clinical efficacy

U-test		Z=1.450	P = 0.1470		
Total	69		2	77	
Drug Eliminated Decreased Replaced Unchanged Total	16	(23%)	ă.	•	(0/00)
Replaced	12	(17%)	13	77	(0 01)
Decreased	35 6 (51%) (9%)	29%)	4	(43%) (5%)	48%)
Eliminated	35 (51%)	41 (59%)	33	(43%)	37 (48%)
Drug	1g×2	9		$2g \times 1$	
U-test		Z = 1.509	P = 0.1313		
Total	69	3		77	
Poor	23	(33%)	6	33	(43.0)
Drug Excellent Moderate	32	(%2:	35	(45%)	1700)
ent	14	46 (67%)	6	(12%)	44 (57%)
Excell			_		

	100	c06:0=Z	N.S.					Z=1.055	N.S.		
;	29			30			40			47	
5	(17%)		•	(300)	(0/nc)	7	11	(0.,02)	9.	1901)	(0.0+)
3	(10%)		6	(1002)	(0.01)		6000	(0,00)	-	6001	(0.61)
2	(200)	(%7,	1	(3%)	18 (60%)	4	(%01)	20 (50%)	က	(%)	19 (40%)
19	(%99)	21 (72%)	17	(21%)	18 (16	(40%)	20 (8	16	(34%)	19 (4
,	$_{ m lg} \times _2$			$2g \times 1$			$_{1\mathrm{g}\times2}$			$2g \times 1$	
16	эзәц	csi	ano	Vith	٨		ter	athe	э ц	ŀΜ	

 $\mathbf{Z} = 0.761$ N.S.

40

(43%)

(40%)

(18%)

 $1g \times 2$

23 (58%)

With catheter

17

47

22 (47%)

(45%)

(%6)

 $2g \times 1$

N.S.:P>0.5

25 (53%)

21

Z = 1.293P = 0.1960

29

(51%)

(22%)

(54%)

 $1g \times 2$

23 (79%)

30

(32%)

 (47^{o}_{o})

(17%)

 $2g \times 1$

Without catheter

19 (63%)

N.S.:P>0.5

	Drug	Cleared	Decreased	Unchanged	Total	U-test		
	1g×2	24 (35%)	15 (22%)	30	69			
		39 (57%)	(44%)		Z = 0.727		
		22	18	37		N.S		
	$2g \times 1$	(29%)	(23%)		77			
		40 (52%)		(48%)	<u> </u>	<u> </u>		
		12	7	10				
ete	1g×2	(41%)	(24%)	(34%)	29			
E		19 ((66%)	(34,0)		Z = 1.307		
ğ		9	5	16		P=0.1912		
Without catheter	2g×1	(30%)	(17%)	(53%)	30			
		14 ((47%)	(33,0)				
		12	8	20				
Ē	1g×2	(30%)	(20%)	(50%)	40			
With catheter		20 ((50%)	(3070)		Z = 0.216		
를		13	13	21		N.S.		
\ <u>\</u>	2g×1	(28%)	(28%)	8%) 21	47			
		26 ((55%)	(45%)				

Table 11 Evaluation of efficacy on pyuris

N.S.:P>0.5

がでてくるものと思われる。

(v) 有用性の判定

有用性得点を 20 点ごとに区切り、5 段階に分類し、評価をまとめたものが Table 17 である。1 g 2 回投与群の 60 点以上が 61% であるのに比べ 2 g 1 回投与は 46% となっている。 両群間には推計学的差は 認められなかったが、1 g 1 2 回投与群の方がやや臨床効果が高かったかの印象を与える data である。

7. 臨床検査成績への薬剤投与の影響

Table 18 に示すごとく、血球計算値および生化学的 検査値(肝機能検査、腎機能検査 data を含む)、のすべ てにおいて、薬剤投与後、所見に悪化したものはほとん どなく、また、わずかに認められた変化も両投与群間に は有意の差は認められていない。

8. 副作用

薬剤投与により臨床的に副作用と認められるような所見を示したものは、副作用検討可能症例 171 例中2例がそれぞれの投与群に1例ずつ認められている。その所見および経過をまとめたものが Table 19 である。副作用出現率は全体として1%強であり、両群間に有意差は

認められていない。

III. 考 室

Cefotetan は cephamycin 系の新しい抗生剤として開発されたものであるが同時に long acting であるという特徴をもっている。いままでのほとんどの cephem 系抗生剤の half life はほぼ 30分~60 分であるが cefotetan は半減期が著しく延長されたものになっている。そのため尿路感染症より分離される各種細菌の MIC 分布のかなりの部分をカバーできる程長時間尿中濃度を保持することが可能である。

秋々の Fig. 2 で検討したごとく 2g 投与 24 時間後でも $130~\mu g/ml$ を保持することが証明され、それは我々の今回検討した症例分離株の MIC 分布の 7 割をカパーしている。

その様な薬剤の臨床効果を、一つの投与法による最低 尿中濃度と、その濃度がカバーしている MIC をもつ細 菌分離頻度との関係で検討することは興味深い所であ る。

その様な立場をさらにつきつめれば、本 trial の様 2g を1回投与した場合と2分割投与した場合の薬機

Table 12 Cases of bacterial replacement

Dose	No.	Strains detected before treatmen		Strains a after treatn)	Change i	n pyuria
	1	E. coli	106	S. faecalis	(800)	105	Unchanged	(+ → ±)
	2	P. rettgeri P. morganii	10 ⁶	S. faecalis	(800)	10 ⁵	Unchanged	(₩→₩)
	3	E. coli	>107	P. aeruginosa S. faecalis	(800)	10 ⁶	Unchanged	(+ → +)
	4	E. coli	106	S. faecalis	(200)	103	Unchanged	(+ → +)
		P. morganii	105		· · · · · · ·			
	5	S. aurcus	10^{3}	S. faccalis	(800)	10^{3}	Unchanged	(# → #)
		A. bronchicanis	104		, ,			•
		A. bronchicanis	104					
1g×2	6	A. denitrificans	10^{5}	P. aeruginosa	(>800)	10 ⁶	Unchanged	(# → #)
		P. morganii	105	S. faecalis	(800)	10 ³	3	, ,
	7	S. aureus	10^{5}	S. faecalis	(800)	104	Unchanged	(+ → ±)
		K. pncumoniae	105					
	8	S. faecalis	10^{6}	S. faecium	(400)	107	Decreased	(+ → ±)
	9	S. marcescens	106	S. faecalis	(400)	10 ³	Decreased	(# → ±)
		C. freundii	>107	A. calcoaceticus	(800)	104	01 •	
	10	S. marcescens	104	S. faecalis	(800)	<103	Cleared	$(\pm \rightarrow -)$
		P. inconstans	107	0 (1:	(000)	102	CI I	/ w
	11	P. mirabilis	10^{5}	S. faecalis	(800)	10^{3}	Cleared	(# → -)
	12	K. pneumoniae	107	S. faecalis	(200)	10 ³	Cleared	(+ → −)
	1	K. pneumoniae	107	S. faecalis	(200)	105	Unchanged	(+ → +)
	2	S. marcescens	106	S. faecalis	(800)	10 ⁵	Unchanged	(# → #)
	3	K. pneumoniae (+)	104	S. faecalis	(400)	10³	Unchanged	(₩ → ₩)
		К. pncum oniae (–)	105	S. Juecuns	(400)	10	Onenanged	(111 7 111 /
	4	E. coli	10^{6}	P. aeruginosa	(>800)	10 ⁷	Unchanged	(+ → ±)
	•	S. marcescens	105	1. ueruginosa	(> 000)			(
	5	E. coli	105	P. aeruginosa	(>800)	105	Unchanged	(+ → +)
	6	E. coli	107	P. aeruginosa	(400)	10 ³	Decreased	(# → ±)
2g×1	7	P. morganii	107	S. faecalis	(200)	10 ⁶	Decreased	(₩ → +)
25/1		A. bronchicanis	105		(200)	10	Decreased	(
	8	E. coli	107	S. faecalis	(400)	10 ⁶	Decreased	(# → +)
	9	K. pneumoniae	107	S. faecalis	(200)	10³	Cleared	(+ → −)
	10	Proteus sp.	107	S. faecium	(800)	10 ⁶	Cleared	(₩ →)
		S. epidermidis	10 ³			10	J.cu. cu	(" ' /
	11	S. marcescens	10 ⁷	P. aeruginosa	(>800)	10 ⁷	Cleared	(± → −)
	**	A. hydrophila	104	2. wornginoou	(> 000)	10	Olcared .	()
	12	S. marcescens (-)	107	P. martophilia	(100)	104	Cleared	(+ → −)
		S. marcescens (+)	105				J.00.00	

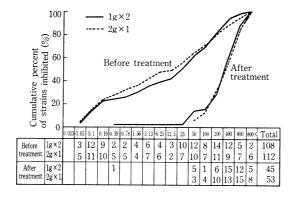

Drug	Excellent	Good	Fair	Poor	Total	U-test
1g×2	9 (13%)	9 31 (13%) (46%) 40 (59%)		8 (12%)	69	
17 T 10 M M M M M M M M M M M M M M M M M M	40 (5	9%) 				Z = 1.120 $P = 0.262$
$2g \times 1$	(10%)	(38%)	29 (38%)	(14%)	77	
	37 (4	37 (48%)		(1470)		

Table 13 Clinical assessment by doctor in charge

Table 14 Comparison of evaluation based on the criteria of UTI and doctor in charge

Drug	Efficacy	Excellent	Good or moderate	Fair	Poor	Total
	Criteria of UTI	14	32	23	23	69
$1g\times2$	Criteria of doctor in charge	9	31	21	8	69
	Criteria of UTI	9	35	33		77
2g×1	Criteria of doctor in charge	8	29	29 40	11	77

Fig. 4 Changes in sensitivity pattern of isolated bacteria due to treatment

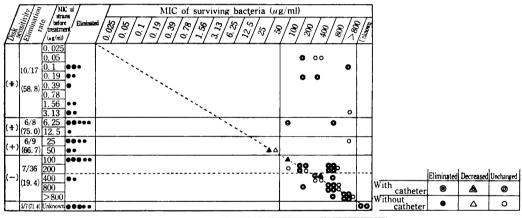
低尿中濃度と臨床効果とを比較することにつながる訳で ある。

結論からいえば、2回分割投与の方がやや有利な成績 を保っているが推計学的には有意の差とはならなかった。 石神, 梅津ら⁸の複雑性尿路感染症を対象とする 本薬 剤 1g 2分割投与および 2g 2分割投与による治療効果の比較検討成績と我々の成績を比較すると Fig.7 のように興味深い知見が得られた。

両トライアルの対象がともに 複雑性尿路 感染症であ

Table 15(A) Bacteriological response to cefotetan 1g×2

	solated organisms	Before	Effic	acy on bac	teria	Flimings	tion rate	Appear treat	ed after ment
1:	solated organisms	treatment	Eliminated	Decreased	Unchanged			>103	< 103
S	aecalis	17	6	1	10	6/17	(35.3)	10	2
	S.aureus	3	3			3/3	(100)		
ပ္	S.epidermidis	2	2			2/2	(100)		
Other GPC	S.faecium						ĺ	1	
her	β-Streptococcus								
ŏ	GPC								
	Subtotal	5	5			5/5	(100)	1	
E. e	coli	15	15			15/15	(100)		
Kleb- siella	K.pneumoniae	10	8	1	1	8/10	(80.0)		
Siè Z	K.ozaenae								
	P.vulgaris								
	P.morganii	6	6			6/6	(100)		
SI	P.mirabilis	3	3			3/3	(100)		
Proteus	P.inconstans	1	1			1/1	(100)		
ď	P.rettgeri	3	3			3/3	(100)		
	Proteus sp.								
	Subtotal	13	13			13/13	(100)		
er ter	E.aerogenes						A TOTAL CONTRACTOR OF THE PERSON OF THE PERS		
bact	E.cloacae								
Citro	C.freundii	1	1			1/1	(100)		
Enterobacter & Citrobacter	Subtotal	1	1			1/1	(100)		
	rratia (S.marcescens)	20	15	3	2	15/20	(75.0)		1
Н.	alvei	2	2			2/2	(100)		
	neruginosa	7	3	1	3	3/7	(42.9)	3	
ıas	P.putida	4	4			4/4	(100)		2
mon	P.maltophilia	3	3			3/3	(100)		
ner wdo	P.cepacia	4	2		2	2/4	(50.0)		
Other Pseudomonas	Subtotal	11	9		2	9/11	(81.8)		2
	A.calcoaceticus	3	1	1	1	1/3	(33.3)	1	
	A.bronchicanis	3	2		1	2/3	(66.7)		
	A.faecalis	2	2			2/2	(100)		
	A.denitrificans	1	1			1/1	(100)		
	A.xylosoxidans								
ίR.	Achromobacter sp.								
ঠ	A.hydrophila								
Other NF-GNR	F.meningosepticum	1	1			1/1	(100)		
<u>, , </u>	Flavobacterium sp.	1	1			1/1	(100)		
the	A.viridans	1	1			1/1	(100)		
0	GNR		:			, i	Ì		1
	Subtotal	12	9	1	2	9/12	(75.0)	1	1
	GPC total	22	11	1	10	11/22	(50.0)	11	2
	GNR total	91	75	6	10	75/91	(82.4)	4	4
	Total	113	86	7	20	86/113	(76.1)	15	6


Table 15(B) Bacteriological response to cefotetan $2g \times 1$

	coloted aggregations	Before	Effic	acy on bac	teria	Elimination rate		Appeared after treatment		
1	solated organisms	treatment	Eliminated	Decreased	Unchanged	(9	6)	$>10^{3}$	< 103	
S. fe	aecalis	14	3	1	10	3/14	(21.4)	8	4	
	S. aureus	2	1		1	1/2	(50.0)			
C	S. epidermidis	4	4			4/4	(100)			
Other GPC	S. faecium							1		
her	β-Streptococcus	1	1			1/1	(100)			
Ot	GPC									
	Subtotal	7	6		1	6/7	(85.7)	1		
E. 0	roli	12	12			12/12	(100)			
Kleb- siella	К. рпеитопіае	8	8			8/8	(100)			
Kle sie	K. ozaenac	1	1			1/1	(100)			
	P. vulgaris	3	3			3/3	(100)			
	P. morganii	6	6			6/6	(100)			
S	P. mirabilis	3	3			3/3	(100)			
Proteus	P. inconstans	2	2			2/2	(100)			
P_{γ}	P. rettgeri	6	5		1	5/6	(83.3)			
	Proteus sp.	2	2			2/2	(100)			
	Subtotal	22	21		1	21/22	(95.5)			
er ter	E. aerogenes	3	3			3/3	(100)			
bact	E. cloacae	4	2	2		2/4	(50.0)			
ero	C. freundii	2	2			2/2	(100)			
Enterobacter & Citrobacter	Subtotal	9	7	2		7/9	(77.8)			
	ratia (S. marcescens)	27	19	1	7	19/27	(70.4)			
	eruginosa	13	3	3	7	3/13	(23.1)	5		
ıas	P. putida	1			1	0/1	(0.0)			
тои	P. maltophilia							1		
ner udo	P. cepacia	2	1		1	1/2	(50.0)			
Other Pseudomonas	Subtotal	3	1		2	1/3	(33.3)	1		
	A. calcoaceticus	3	3			3/3	(100)	2		
	A. bronchicanis	1	1			1/1	(100)			
	A. faecalis									
	A. denitrificans									
	A. xylosoxidans									
ΊR	Achromobacter sp.	1		1		0/1	(0.0)			
-GN	A. hydrophila	1	1			1/1	(100)			
NF	F. meningosepticum									
Other NF-GNR	Flavobacterium sp.	1	1			1/1	(100)			
the										
0	A. viridans									
	GNR	1	1			1/1	(100)		1	
	Subtotal	8	7	1		7/8	(87.5)	2	1	
				l						
	GPC total	21	9	1	11	9/21	(12.7)	9	4	
	GNR total	103	79	7	17	79/103	(76.7)	8	1	
	Total	124	88	8	28	88/124	(71.0)	17	5	

Fig. 5 (A) Changes in maximum MIC of bacteria isolated due to CTT (1g×2)×5 days treatment

/		: /Al	ICol/ ains/Elimi ore/nated	MIC of surviving bacteria	(μg/ml)]			
180	Elimination	/ug m	iý .	0/0/0/0/0/0/0/1/0/0/2/0/0	2 2 Z	\$ 8 4					
	10/16	0. 025 0. 05 0. 1 0. 19	•		0	9					
(#)	(62 , 5	0. 39 0. 78 1. 56 3. 13				•					
(+)	2/3 (66. 7)	6. 25 12. 5	•		(0					
(+)	7/12 (58.3)	25 50	•••••	***		0					
(-)	14/34	100 200 400	00000		0.0	9 °			Fliminated	Decreased	Unchanged
	(41, 2)	800 >800		•) (0		With		A	Ø
	2 4 50 0	Unknown	••		-		àΔ	Without catheter	•	Δ	0

Fig. 5 (B) Changes in maximum MIC of bacteria isolated due to CTT (2g×1)×5 days treatment

MIC 0.025 = 6.25 = 25 - 50 = 100 = 0.000 = 0

り、同じ泌尿器科医の検討とはいえ背景因子が異なるトライアルを全く同じレベルで議論することはかならずしも適当とは考えないが、1g 2回投与群の成績が両トライアルにおいてほぼ同率の有効率であることは単なる偶然の一致とは考え難い。

そこで両トライアルの所見を同一レベルのものと解釈して石神らの 0.5g 2回投与の成績と我々の 2g 1回の成績を比較するとほぼ同じ程度の有効率になっている。0.5g 投与の 12 時間後の尿中濃度は 133 (± 68) $\mu g/ml$ と報告 21 されている。ところが前にも述べたように 2g 1回投与の 24 時間後の濃度もまた 131 $\mu g/ml$ であった。治療期間中の最低濃度がほぼ同レベルの両群において治療効果が近似の有効率になっているということは治療期間中の薬剤最低濃度が治療成績をかなり規定

しているかのごとく思わせる極めて示唆に富んだ data と考える。2g 1回投与の場合の最高尿中濃度は逆に1g 2回の場合の 2 倍値になっているにもかかわらず、そのような成績になっていることは少なくともこのような β-lactam 系薬剤においては尿中最低濃度が治療効果を決める重要な因子となっているものと考える。このように尿中最低濃度が治療成績に強い影響を与えているという事実は我々の別の抗生剤でのトライアルでも経験していることであり臨床的に意義深い知見といえよう。

以上述べてきたことから考えると、やむを得ず薬剤投与が1日1回しか可能でない場合には尿中最低濃度を考えながら薬剤投与量を考慮すればそれなりの治療成績を得られることが推定できるわけである。ことに cefotetan のような long acting な薬剤においては患者の治療

Fig. 6 (C) Changes of bacterial count-E. coli,

Fig. 6(B) Changes of bacterial count—Serratia, Pseudomonas, Enterobacter, Citrobacter,

Klebsiella, Proteus-

 $10^7 10^8$

 10^5 10^6

<10³ 10³ 10⁴ o

 $1g \times 2$

0 39

0

 10^{6}

One day after treatment

 $\frac{10^7}{10^8}$

Two days after treatment

Fig. 6 (A) Changes of bacterial count—total strains—

		710							⊕			
<u>국</u>		108 >10										
3. Juecuus, otner GFC, INF-GINK—	nent	107		€		0		0	⊕			
Z	treatr	106	•		€	•	⊕	0			0	1
	Two days after treatment	105		e	e	0 0						1
1311	days	104	о ө		•		0					
, ,	Two	103	0	⊕		0						
מרמוז		$<10^{3}$ 10^{3}	0	0	Ф		0					
. J		0	⊕ 12 0 24	e	° •			.				
	,	lg×2	0	<103	10^{3}	104	10^{5}	106	107	10^{8}	>108	
	•	Ĩ		цı	әшұғ	tres	ter	y af	ep a	эuО		1
												•
		$>10^{8}$						T	€		T	_
		108							T		Ť	
	ent	107		•		0		•	€			
	reatm	10^{6}	•		•	⊕	•	0			1	0
	after t	10^{5}		⊕	9 9	e					T	
											\top	
	days	104	0		⊕		0	1			1	
	Two days after treatment			⊕	•	0	0					
	Two days	$<10^3$ 10^3 10^4		e e	e	0	0					_
	Two days		ooo oo o o •	⊕		0		999				
		$<10^{3}$ 10^{3}	000000	0	⊕	104		106 666	107	108	301/	>102

			,			,		,		,
	> 108									
	108									
ent	107									
treatm	106									
after	10°									
Two days after treatment	10			0						
Two	10^{3}	0								
	<103									
	0	⊕ 0 29								
;	78×1	0	$< 10^{3}$	10^{3}	104	10^{5}	10^{5}	10^{7}	10°	>108
•	77		μı	эшр	1168	1911	r Ve	рә	uΟ	

	\ \ \ \ \										
	108										
ent	107						0 0 0 0	0 ⊕			
Two days after treatment	10^{6}	0	0	00	•	# # # #					Į į
after t	10^{5}	0 #	•	0	ө ө	00 ##					tather
days a	104	0	Ф	• °		Ф					With catheter
Two	10^{3}	0	о Ф	•	0	0					
	<103	⊕			⊕						athete
	0	⊕ 13 ⊘ 10	00	0 🕀			0				o tuor
9471	8 ^ 1	0	$< 10^{3}$	10^{3}	104	10^{5}	10^{6}	10^{7}	10^{8}	>108	O Without catheter
G	7		111	ıəwı	r.ea	. ioi	IE A	gg	อนด		Ĭ

⊕00

0

0 0 ⊕ ⊕

 10^3

0 0

⊕

 10^4

000

○**⊕**

⊕

10°

One day after treatment

 10^{8}

 10^{7}

 $10^8 > 10^8$

 10^7

 10^{6}

 10^{5}

 10^{4}

0 103

< 103

0 080 0

 $2g \times 1$

Two days after treatment

er	
o Without catheter	heter
hout	⊕With catheter
o Wit	⊕ Wit
	3t 7704

O.Withou	1	₩ith c	
	γ²-test		P = 0.3801
	Increase rate	27 46 (58.7%)	38 55 (69.1%)
-		lg×2	$2g \times 1$

Table 16(A) Concentration of cefotetan in culture of Uricult®

Cefotetan concentration in		ncentration of plution(µg/ml)
added solution(µg/ml)	Middle	Surface
500	25	500
100	5.0	100
20	1.0	20

Table 16(B) Results in tests

	MIC* of	Cefotetan concentration in urine						
Organism	cefotetan	500 μg/ml	100µg/ml	20μ g /ml				
S.marcescens	0.78	(—)	()	(—)				
K.pneumoniae	0.2	(—)	(—)	(—)				
E.coli NIHJ	0.1	()	()	<10 ³ /ml ^{3 0 =} 3 3				
P.mirabilis ATCC 21000	0.05	(—)	()	(—)				
P.aeruginosa NCTC 10490	800	104/ml	10 ⁶ /ml	10 ⁶ /ml				
S.faecalis ATCC 8043	200	10⁴/ml	10 ⁶ /ml	10 ⁶ /ml				

^{• 106} CFU/ml

Table 17 Usefulness judged by doctor in charge

Score	100~80	79~60	59~40	59~40 39~20		The state of the s		
Usefulness Drug	Sufficiently satisfactory	Satisfactory	Common	Unsatisfactory	Useless	Total	U-test	
1g×2	10 32 (15%) (46%)		17 (25%)	8 (12%)	2 (3%)	69		
	42 (6	61°6)	(23/0)	(12/0)	(3/0)		Z = 1.234	
	9 26 33 (12%) (34%) 400		22	9	0		P = 0.2173	
2g×1				- 1	-	77		
	35 (4	16%)	(43%)	(12%)	()			

Table 19 Side effects

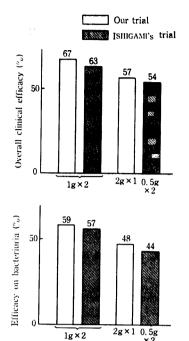

				Da	ate		Incidence	-	
Drug	Sex	Age	Туре	Appearance Dis -appearance		Administration	of appearance	Test	
1g×2	M	74	Eruption	1st day	1st day	Discontinued	±0(1.3%)		
2g×1	М	60	Drug eruption	3rd day		Continued (Antihistaminics)	1/ ₁ (1.1%)	N.S.	

Table 18 Changes in laboratory test results

The			Total		of case laborat						Deteriora- tion	Test on deteriora		
Item			Drug	No.of cases	Im- proved	Un- changed	1 A	Dete B	eterioration B C D E			attributed to drug(C+D+E)	(FISHER'S exact)	
			1g×2	76	1	68	5	2	0	0	0	0%		
		RBC	$2g\times1$	87	2	79	5	1	0	0	0	0%	N.S.	
			$\frac{1}{g\times 2}$	75	1	68	6	0	0	0	0	0%		
		Hb	$2g\times1$	86	2	78	5	1	0	0	0	0%	N.S.	
			$\frac{1}{g\times 2}$	75	1	69	5	0	0	0	0	0%		
		Ht	$2g\times1$	84	1	78	4	1	0	0	0	0%	N.S.	
			$\frac{1}{g \times 2}$	75	12	56	4	$\frac{1}{2}$	1	0	0	1.3%		
		WBC	$2g\times1$	86	23	52	9	0	1	1	0	2.3%	P = 0.3535	
			$\frac{1}{g \times 2}$	48	1	47	0	0	0	0	0	0%		
		Baso.	$2g\times1$	47	2	45	0	0	0	0	0	0%	N.S.	
Blood			$1g \times 2$	48	1	47	0	0	0	0	0	0%		
	_	Eosino.	$2g\times1$	50	3	47	0	0	0	0	0	0%	N.S.	
	gran		1g×2	49	1	46	1	0	1	0	0	2.0%		
	Hemogram	Neutro.	$2g\times1$	50	4	45	1	0	0	0	0	0%	P = 0.4949	
	H		$1g \times 2$	48	1	45	1	1	0	0	0	0%		
		Lymph.	$2g\times1$	50	3	47	0	0	0	0	0	0%	N.S.	
•			1g×2	47	0	46	0	1	0	0	0	0%		
		Mono.	$2g\times1$	50	1	49	0	0	0	0	0	0%	N.S.	
		D1 1	1g×2	57	1	54	1	0	1	0	0	1.8%		
	Platelet		$2g\times1$	59	2	56	0	0	1	0	0	1.7%	N.S.	
	GOT		1g×2	76	2	66	5	1	2	0	0	2.6%	N.S.	
			$2g\times1$	86	3	75	2	5	0	1	0	1.2%		
Liver	GPT		1g×2	76	1	70	4	0	1	0	0	1.3%		
function			$2g\times1$	86	3	77	2	3	0	1	0	1.2%	N.S.	
	Al-P		1g×2	70	0	68	2	0	0	0	0	0%		
			$2g\times1$	83	2	80	1	0	0	0	0	0%	N.S.	
		DUN	1g×2	75	2	69	3	0	1	0	0	1.3%	NC	
		BUN	$2g\times1$	85	6	78	0	0	1	0	0	1.2%	N.S.	
Renal		0.0	1g×2	73	0	67	3	1	2	0	0	2.7%	T) 0.014C	
function		S-Cr	$2g\times1$	84	5	76	2	1	0	0	0	0%	P = 0.2146	
		CO	1g×2	3	0	3	0	0	0	0	0	0.00	NC	
		CCr	$2g\times1$	4	2	1	0	1	0	0	0	0%	N.S.	
		NI-	1g×2	74	1	71	2	0	0	0	0	0%	N C	
		Na	$2g\times1$	84	0	84	0	0	0	0	0	0%	N.S.	
Electrical 4		TZ.	1g×2	74	0	69	3	1	1	0	0	1.4%	D 0.1710	
Electrolyte		K	$2g\times1$	83	2	79	1	1	0	0	0	0%	P = 0.4713	
		CI	$1g \times 2$	74	0	71	3	0	0	0	0	0.00	NC	
	Cl		$2g\times1$	84	0	84	0	0	0	0	0	0%	N.S.	

A:Definitely not, B:Probably not, C: Possible, D:Probable, E:Definite

Fig. 7 Comparison of clinical and bacteriological efficacy in our trial and ISHIGAMI's trial

条件によっては、投与量をそれなりに考慮すれば1日1 回投与法を採用してよいものと考える。

涼 対

- IWANAMI, M.; T. MAEDA, M. FUJIMOTO, Y. NAGANO, N. NAGANO, A. YAMAZAKI, T. SHIBANUMA K. TAMABAWA & K. YANO: Synthesis of New Cephamycin Derivatives and a Novel Rearrangement between Isothiazolethioacetamides and 1,3-Dithietanecarboxamides. Chem. Pharm. Bull. 28 (9): 2629~2636, 1980
- 第 28 回日本化学療法学会西日本支部総会, 新薬 シンポジウム。 Y M09330, 1980, 長崎
- 3) 梅津敬一,石神襄次ら:複雑性尿路感染症に対するYM09330 の臨床評価—Cefmetazole を対照薬とした二重盲検比較試験—第 29 回日本化学療法学会西日本支部総会発表 (演観 No. 80),1980,広島

CLINICAL EFFECTS OF THE COMPARATIVE STUDY BETWEEN 2g ONCE A DAY AND 1g TWICE A DAY ADMINISTRATION OF CEFOTETAN IN COMPLICATED URINARY TRACT INFECTIONS

YOSHIAKI KUMAMOTO and AKIRA NISHIO
Department of Urology, Sapporo Medical College

KAZUHIDE KURODA

Department of Urology, Asahikawa Medical College

ICHIRO Tauji

Department of Urology, Hokkaido University, School of Medicine

TOMINISA HUNYU

Department of Urology, Hirosaki University, School of Medicine

TSUTOMU OHORI

Department of Urology, Iwate Medical University, School of Medicine

Seigi Tsuchida

Department of Urology, Akita University, School of Medicine

SEIICHI ORIKASA

Department of Urology, Tohoku University, School of Medicine

KIICHI SUZUKI

Department of Urology, Yamagata University, School of Medicne

YASUO SHIRAIWA

Department of Urology, Fukushima Medical College

AKIMI OGAWA

Department of Urology, Shinshu University, School of Medicine

Уозню Азо

Department of Urology, Hamamatsu Medical College

Koichi Deguchi

Tokyo Clinical Research Center

TSUNEO TANAKA

Department of Health Administration, School of Health Sciences, Faculty of Medicine, University of Tokyo

- 1) We administered cefotetan to patients with complicated urinary tract infections either at a single dose of 2 g/day or in two divided doses of 1 g each per day and studied whether the different methods of administration would affect the clinical efficacy, or its effect on bacteriuria or pyuria.
- 2) Of those patients in whom we could study the therapeutic results 69 patients received 1 g twice a day and 77 patients received 2 g once a day. If we lood at their background factors, almost all of the patients were elderly patients and 60% of them were catheter-bearing patients; 47% of the patients suffered from multiple bacteria infections so that this patient group can be described as suffering from rather complicated urinary tract infections. However, there was no significant difference in regard

to background factors between the two groups. The efficacy rates based on UTI judgmental criteria for the two groups was as follows: overall clinical efficacy was 67% in the $1\,\mathrm{g}\times2$ group and 57% in the $2\,\mathrm{g}\times1$ group, the bacteriological effect was 59% in the $1\,\mathrm{g}\times2$ group and 48% in the $2\,\mathrm{g}\times1$ group and the efficacy on pyuria was 57% in the $1\,\mathrm{g}\times2$ group and 52% in the $2\,\mathrm{g}\times1$ group. Thus statistically no significant difference was observed between the two groups. However, in regard to overall clinical efficacy the $1\,\mathrm{g}\times2$ group exhibited slightly superior results in comparison with the $2\,\mathrm{g}\times1$ group.

The clinical effect based on the judgment of the attending physician was 59% in the $1 g \times 2$ group and 48% in the $2 g \times 1$ group so that this rate was about 10% lower than the above-mentioned efficacy rate based on UTI judgmental criteria.

3) No notable abnormalities were reported in regard to side-effects or clinical test results.