Ceftazidime の安全性に関する研究(I)

急性毒性試験並びにラットにおける皮下投与亚急性毒性試験

田 村 穣・佐 藤 憲 雄・江 崎 洋 志・宮 本 晴 美 小 田 早 苗・平 井 清 美・戸 門 洋 志 新日本実業株式会社東京研究所

> 松 本 道 男・白 井 俊 一 順天堂大学医学部病理学教室

新しい cephalosporin 系抗生物質である Ceftazidime (CAZ, SN401) の急性毒性及び皮下投与亜急性毒性を検討し、次のような結果を得た。

急性毒性:1. CAZ の5週齢マウス及びラットに対する LD₅₀ は静脈内・腹腔内及び皮下投与において 5.8g/kg~約 20g/kg の範囲にあり、経口および筋肉内投与においてはそれぞれ 20g/kg 以上及び 4g/kg 以上であった。またウサギにおける LD₅₀ は静脈内及び筋肉内投与でそれぞれ 2g/kg 以上及び約 2g/kg であった。

2. CAZ の 3日齢及び14 日齢 5ット及びマウスにおける腹腔内及び皮下投与による LD_{50} は 5 週齢動物における LD_{50} の $1/3\sim1/2$ であり、幼若動物に高い感受性がみられた。

亜急性毒性:1. ラットにおける CAZ (0.06, 0.2, 0.6, 2.0, 5.0 g/kg/day) の 35 日間皮下投与亜急性毒性試験において、0.2g/kg/day あるいはそれ以上の投与量で投与部位の皮下出血に起因すると思われる軽度の貧血所見、およびそれに対応した変化と思われる網状赤血球率の増加・骨髄増生・髄外造血等の変化がみられた。また 0.2g/kg/day またはそれ以上の投与量群で体重増加抑制、腎・盲腸・肝及び脾重量の増加も認められた。これらの変化は cephalothin (CET) (2g/kg/day) の投与によっても惹起された。本薬の腎障害性は CET と同程度と考えられる。

- 2. 35 日間投与後の 4 週間回復試験において上記の変化は消失または減弱したことにより、CAZ 及び CET による変化はいずれも可逆的なものであった。
 - 3. 最大無作用量は 0.06 g/kg と推定された。

Ceftazidime (CAZ, SN401) は英国グラクソ社で合成された Fig.1 に示す構造式を有する注射用セファロスポリン系薬物である。

Fig. 1. Chemical structure of CAZ

$$\begin{array}{c|c} N & O & S \\ \hline N & C & C & NH & S \\ \hline N & CH_3 & O & N & CH_2 - N \\ \hline O - C - COOH & COO \\ \hline CH_3 & CH_3 & O \end{array}$$

CAZ は広域な抗菌スペクトルを有し、従来の大部分のセファロスポリン系薬物が無効であった P. aeruginosa, ブドウ糖非発酵のグラム陰性桿菌ならびに Serratia に対しても強い抗菌作用を示すい。 本薬は静脈内投与により高い血中濃度が得られ、比較的長い血中半減期を有し、体内で代謝されずに大部分が尿中に排泄される。

著者らは CAZ の成熟並びに幼若ラットおよびマウス

における急性毒性試験並びにラットにおける皮下投与に よる 35 日間亜急性毒性試験を実施したので報告する。

I. 材料及び方法

1. 被験物質

供試した CAZ は 5 水和物であるが、本試験においては CAZ の量はすべて無水物の量で表わすものとした。 CAZ は炭酸ナトリウム(CAZ 5 水和物の 1/10 量)とともに注射用蒸留水に溶解し、40 w/v%(急性毒性)または 30 w/v%(亜急性毒性、ただし最低投与量群では10 w/v%)の溶液として投与した。

対照薬としては cephaloridine (CER, 日本グラクソ) 及び cephalothin (CET, 日本グラクソ) の両者 (急性毒性) または後者 (亜急性毒性) を用い, いずれも注射 用蒸留水に $25\,\mathrm{w/v}$ % の濃度に溶解した。各薬物ともミリポアフィルター (0.45 μ m) で沪過した後に使用した。

亜急性毒性試験における対照群には注射用生理食塩液

を投与した。

2. 実験動物

雌雄の ICR 系マウス [日本チャール スリバー(株) Crj; CD-1], SD 系ラット [静岡県実験動物農業協同組合, Slc; S.D.] 及び日本白色在来種ウサギ [市川屋]を使用した。

急性毒性試験におけるマウス及びラットは購入後1週間予備飼育し、5週齢で1群10匹として、またウサギは約2週間の予備飼育後1群5羽として供試した。なお3、14及び21日齢の幼若マウス及びラットについては、親動物を購入して当研究所内で生産した上、それぞれの日齢で1群8匹として供試した。

一方, 亜急性毒性試験においては, 購入後1週間予備 飼育したラットを5週齢で1群10または17匹として 使用した。

予備飼育期間及び試験期間とも動物は温度 23±2℃, 湿度 55±5%(マウス・ラット)または 45±5%(ウサギ), 照明時間 7:00~19:00 の空調動物室内 で 飼育し、 飼料[日本チャールスリバー(株) CRF-1 または日本クレア(株) CR-3] 及び水道水を自由に摂取させた。ただし経口投与を行なり場合には、その前日の夕刻より投与終了までの間は絶食とした。なお試験期間中急性毒性試験におけるマウス及びラットは群ごとに 1~2 ケージに集団飼育し、ウサギは個別飼育した。また亜急性毒性試験におけるラットは個別飼育とした。

3. 投与方法及び観察・測定方法

(1) 急性毒性試験

1) 成熟動物

5週齢マウス及びラットに対しては CAZ を静脈内・腹腔内・皮下・経口並びに筋肉内に投与した。またウサギには CAZ を静脈内及び筋肉内投与した。ラットの静脈内及び皮下投与試験では CER と CET を対照薬に用いた。なお静脈内投与においては投与速度をマウスの場合 0.1, ラットの場合 0.2, ウサギの場合 0.5 ml/10 sec とした。また筋肉内投与の際の投与部位は両側大腿筋とした。一方皮下および経口投与の場合の 最大投与量は 20 g/50 ml/kg, 筋肉内投与の場合は 4g/10 ml/kg とした。

死亡例は発見のつど、また生存例は 14 日間の観察終了時に断頭または頸動脈切断により致死せしめ、主要臓器の肉眼観察を行なった。 LD_{50} 値は LITCHFIELD and WILCOXON の方法 20 により算出した。

2) 幼若動物

14 及び 21 日齢マウスに対しては腹腔内投与を行ない, また 3, 14 及び 21 日齢ラットに対しては腹腔内及び皮下投与を行なった。

観察期間は3日齢時投与においては21日齢までとし、14日齢及び21日齢時投与においては14日間とした。なお14日齢時投与群は21日齢で離乳させ、また21日齢時投与群では投与直前に離乳させた。死亡例及び生存例とも主要臓器の肉眼観察を行ない、LD50値はVANder WAERDENの方法がによって算出した。

(2) 亜急性毒性試験

1) 投与方法及び群構成

CAZ 投与群として 0.06, 0.2, 0.6, 2.0 及び 5.0g/kg/day の 5 群を設け, さらに対照群 (生理食塩液 16.7 ml/kg/day) 及び CET 投与群 (2.0g/kg/day) の合計7

Table 1 Results in the dose-ranging test for subacute toxicity test of ceftazidime in rats

Findings		Dose (g	/kg/day)
rindings	0.1	0.5	2.0	8.0
Increase in reticulocyte count	X	Х	х	х
Decrease in RBC count, level of hemoglobin and hematocrit	_	х	х	x
Increase in liver weight	-	х	х	x
Decrease in serum level of total protein and Al-P activity	_	-	x	x
Increase in weights of spleen, kidneys and caecum	_	_	x	x
Increase in water consumption		_	-	x
Decrease in feed consumption and body weight gain	_	_	-	x
Necrosis of skin on injection sites	_	_	-	x
Lethal cases	_	-	-	X

X; significantly different from control group or elicited in the treated group

^{- ;} not significant or not marked

The rats were administered subcutaneously with ceftazidime for 35 days

群に対して1日1回 35 日間毎日各検体を背部皮下に投与した。各実験群の動物数は投与終了時検査用として雌雄各10 匹とし、また最終投与後29 日における回復試験用としては各7 匹とした。ただし CAZの0.06 及び0.2g/kg/day 群には回復試験群を設けなかった。

なお、投与量の設定においては LDso 値並びに1 群雌 雄各6匹として 35 日間皮下投与した 予備試験 の 成績 (Table 1)を参考にした。すなわち 0.1, 0.5, 2.0 およ び 8.0g/kg/day の投与により 8.0g/kg/day 群に体重の 減少,飼料消費量の減少,水消費量の増加,投与部位の 皮下出血・壊死を伴う痂皮形成,雌 1 例の死亡がみられ, また投与終了時には網状赤血球 率 の 増 加(錐 0.5g/kg 以上,雌 0.1g/kg 以上),赤血球数・ヘモグロビン量・ ヘマトクリット値の減少,肝重量の 増 加(0.5g/kg 以 上),血清総蛋白, アルカリ性フォスファターゼ活性の 減少,脾・腎・盲腸重量の増加(2.0g/kg 以上)が認め られた。

以上の予備試験結果より、最大無作用量は 0.1g/kg/day 付近と推定され、また 8.0g/kg/day 投与群では投与局所障害が著しく検体の漏出もみられたことから、本試験における最高投与量は 5.0g/kg/day、最低投与量は 0.06g/kg/day とし、その間に 0.2, 0.6 および 2.0g/kg/day の投与量を設けた。

一方、対照薬に用いた CET については確実な中毒変化が得られる用量を文献 $^{4-6}$) より検討し、2.0g/kg/dayの投与量を設定した。

- 2) 検査項目及び方法
- i)一般検査:試験期間中は毎日1回以上一般症状を 観察した。また体重測定を投与期間は毎日,回復期間は 2~3 日ごとに行なった。 また, 飼料及び水消費量の測 定を 2~3 日ごとに行なった。

最終投与日または最終投与後 28 日目の夕刻より翌朝までの 16 時間は検査予定の動物を絶食下で採尿ケージに個別に収容して採尿し、その後直ちにネンプタール(大日本製薬) 麻酔下で頸動脈より採血した。

ii) 血液学的検査 (EDTA 処理血液):赤血球数・白血球数(東亜, Microcell Counter)・網状赤血球率(BRE-CHER 法)・血小板数 (東亜, Platelet Counter)・ヘマトクリット値 (毛細管法)・ヘモグロビン濃度 (中外製薬, RaBA System)・白血球型別百分比 (GIEMSA 染色)の測定並びに MCV・MCH・MCHC の算出を行なった。

なお、3.8% クエン酸処理血漿についてプロトロンビン時間(国際試薬、コアグスタット)の 測定 も 実施 した。

iii)血清生化学的検査:総蛋白・アルブミン(和光純 薬,A/G-B Test)・総ピリルピン (第一化学,BiL セッ

- ト)・総コレステロール・血糖・尿素窒素・クレアチニン・アルカリ性フォスファターゼ・GOT・GPT・Cn²⁺ (中外製薬、RaBA System)・Na⁺・K⁺ (島津、炎光光度計 M-1)・Cl⁻ (平沼、Chloride Counter) を定置し、A/G を算出した。
- iv) 尿検点: 尿量・比重 (アタゴ, 蛋白風折計)・Na^{*}・K^{*} (島津, 炎光光度計 M-1)・Cl⁻ (平沼, Chloride Counter) の定量及び pH・蛋白・糖・ケトン体・潜血・ウロビリノーゲン (マイルス-三共, Uro-Labstix-II) の半定量を行なった。
- v) 剖検及び臓器重量:放血致死後剖検し,脳・下垂体・胸線・甲状腺・心・肺・肝・胃・脾・腎・副腎・精巣・精巣上体・前立腺・子宮・卵巣及び盲腸の湿重量を測定し,体重に対する相対重量を算出した。
- vi) 病理組織学的検査:上記の諸臓器並びに舌・顎下腺・食道・膵・十二指腸・空回腸・結腸・直腸・腸間膜リンパ節・骨髄・眼球・膀胱・乳腺・精のう・皮膚(投与部・非投与部)について常法に従って H.E. 染色等を施し、光顕的に検査した。

また各群 2 例の肝及び腎については常法(エポン包埋)により電顕的に検査した。

vii) 統計処理:定量的数値については群ごとに平均 値±標準偏差で表わし、半定量的数値については出現頻 度で表わした。

対照群と CAZ または CET 投与群の平均値の差の有 意性は,等分散性の検定後に STUDENT または COCHRAN-COX の t 検定によって検定した。

II. 成 績

- 1. 急性毒性
- (1) LD₅₀

CAZ のマウス・ラット及びウサギに対する LD $_{50}$ 値を Table 2 に示した。いずれの場合にも性差は認められなかった。3 日齢動物における LD $_{50}$ 値は5 週齢動物の約 $1/3\sim1/2$ であり,幼若動物ほど CAZ に高い感受性を示した。

なお 5 週齡マウス及びラットに対する最大投与可能量の投与による死亡率は、皮下投与(19.6 または 20.0g/kg)ではマウス及びラットともほぼ 50% ($3/10\sim6/10$)、経口投与 (20.0g/kg) ではラットのみ雌雄とも 10% であり、マウスの経口投与 (20.0g/kg) 並びにマウス・ラットの筋肉内投与 (4.0g/kg) では死亡は認められなかった。一方、マウス及びラットの死亡例の発現時間は静脈内及び腹腔内投与で 2 時間以内、皮下及び経口投与で投与後 $2\sim5$ 日であった。

さらに CAZ をウサギに静脈内投与 (2.0 g/kg) した 場合には雌雄とも死亡例はみられず, 筋肉内投与(0.5~

Table 2 L.D.so values (g/kg) of ceftazidime in mouse, rat and rabbit

	1													_		1		1
CET	s.c.		1	1			1				1	1	1	ca. 10	>10		1	
3	i.v.	ı	ı	ı	1	l	1	1	1	1	I	1	1	\ 52	\ \	1	1	
CER	S.C.	1	ı	1	1	ı	ı		I	1	ı	ı	ı	\ 5	\ 5		ı	
CE	i.v.	1	ı	!	ı	1	ı	ı	ı	ı	ı	1	ı	×3	8	1	ı	
	i.m.	ı	ı	1	1	\ 4	\ 4	1	ı	ı	ı	ı	ı	^ *	^ *	ca. 2	ca. 2	
	p.o.	1	I	1	ŀ	>20	>20	1	ı	1	1	1	ı	>20	>20	1	1	
CAZ	s.c.	1	I	ı	ı	са. 20	ca. 20	ca. 6.3	ca. 6.3	6.6(6.2-7.0)	7.2(6.9-7.6)	11.9(11.2-12.7)	12.2(11.5-12.9)	ca. 20	ca. 20	-	1	
	i.p.	4.9(4.7-5.2)	4.8(4.6-5.0)	9.0(8.3-9.8)	8.4(7.8-8.9)	ca. 11	ca. 12	5.7(5.4-6.1)	5.7(5.4-6.1)	5.9(5.4-6.5)	5.8(5.2-6.4)	7.5(7.2-7.9)	ca. 7.4	ca. 10	ca. 10	1	1	
	i.v.	I	1	ı	ı	6.8(5.6-8.1)	6.3(5.5-7.1)		ı	1	1	I	ı	6.1(5.5-6.8)	5.8(5.0-6.7)	> 2	> 2	
Body ^{a.} weight	(g)	10.0	6.6	14.6	13.9	28.3	22.6	7.7	7.5	28.8	28.0	44.4	44.0	125.0	109.0	2.66	2.66	
Sex		Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	
Age)	14 days		21 days		5 weeks		3 days		14 days		21 days		5 weeks				
Species		Mouse				2		Rat				-			P	Rabbit		

a) : mean value in animals used h) : in kg

20g/kg) した場合には 1.0 及び 2.0g/kg 投与で5例 中1~3 例が投与後 7~13 日に死亡した。

一方、 ラットに CER を静脈内 $(3.0\,\mathrm{g/kg})$ または皮下投与 $(5.0\,\mathrm{g/kg})$ した場合には全例が死亡し、CET の静脈内投与 $(5.0\,\mathrm{g/kg})$ では 雌のみに 2/10 例、皮下投与 $(10.0\,\mathrm{g/kg})$ では難に 4/10 例、雌に 2/10 例の死亡が認められた。

(2) 一般症状及び剖検所見

1) 5週齢マウス

静脈内投与の場合には正向反射の消失または減少・眼球突出・不規則な呼吸と言った症状のうち一部または全てが全例に認められ、死亡例にはさらに疾走・jumping・強直性痙攣が死亡直前にみられた。腹腔内及び皮下投与の場合は正向反射の消失または減少を除き静脈内投与による症状と同様の症状がやや遅れて発現し、その程度は軽度であった。経口及び筋肉内投与においては自発運動の抑制のみが認められた。

死亡例の剖検では肺のうっ血(静脈内及び皮下投与)・ 腎の退色(静脈内及び腹腔内投与)が主な所見であり、 生存例には著変を認めなかった。

2) 5週齢ラット

CAZ 投与による主な症状はすべての投与経路とも自発運動の抑制・立毛・不規則な呼吸・皮膚の蒼白化等であり、死亡例には疾走・眼球突出・鼻汁分泌・強直性痙撃も認められた。一方、一部の生存例には3日ないし7日後まで下痢または軟便(腹腔内及び経口投与)が、また投与後24時間まで跛行(筋肉内投与)がみられた。

CER 及び CET の静脈内及び皮下投与では CAZ と ほぼ同様の症状が惹起され、 CET の皮下投与の場合に はさらに投与後数分に一時的な興奮状態が発現した。

CAZ による死亡例には腹腔内投与の場合を除いて肺のうっ血が共通して認められ、その他に肺水腫及び腎の退色 (静脈内投与)・胸腺の点状出血 (静脈内及び皮下投与)がみられた。一方、生存例における主な剖検所見は盲腸の拡張 (静脈内・皮下及び経口投与)・腎の腫大及び黄色化 (腹腔内投与) であった。

CER 及び CET を投与したラットにおいては生存例 及び死亡例とも CAZ 投与群と 同様の 剖検所見であった。しかし CER の投与ではさらに腎表面のモザイク状 斑点 (1.0g/kg の静脈内投与, 生存例)・腎の腫大及び 退色並びに肝の腫大 (5.0g/kg の皮下投与, 死亡例) も みられた。

3) ウサギ

CAZ の 静脈内及び筋肉内投与により投与後4日目より断続的に観察期間の終了時まで摂餌量の減少・下痢または軟便が認められ、削瘦も認められた。

削検においては筋肉内投与群に投与部筋肉の退色また は白色変性が認められた以外は、死亡例及び生存例とも 著変は認められなかった。

4) 幼若マウス

CA2 の 腹腔内投与で惹起された投与直後の主な症状は投与後数時間持続する自発運動の抑制であった。また 14 及び 21 日齢マウスの死亡例及び一部の生存例には疾走及び強直性痙攣が認められた。生存例では投与後 24 時間以降には異常を認めなかった。

死亡例における剖検では脳髄膜血管の怒張ないしクモ 膜下出血が共通して認められ、21 日齢マウスを除いて 肺のうっ血もみられた。しかし生存例には著変は認めら れなかった。

5) 幼若ラット

CAZ の 腹腔内及び皮下投与による投与直後の主な症状は幼若マウスと同様に投与後数時間持続する自発運動の抑制であった。 3 日齢ラットの死亡例ではさらに皮膚の暗紫色化(両投与経路)・泣鳴を伴った横転(腹腔内投与)がみられ、また 14 及び 21 日齢ラットの死亡例には両投与経路とも泣鳴を伴った疾走並びに強直性痙攣が惹起された。生存例ではそれ以降、観察期間終了時まで異常を認めなかった。

両投与経路とも死亡例は共通して肺のうっ血を呈し、 皮下投与された3日齢ラット以外にはクモ膜下出血もみ られた。生存例においては盲腸の拡張(14及び21日齢 腹腔内投与並びに21日齢皮下投与)以外は著明な変化 は認められなかった。

2. 亜急性毒性

(1) 一般症状及び死亡例

CAZ 5g/kg 群の雌1例に投与初期に一過性の削瘦・ 自発運動の抑制・不規則な呼吸がみられ、またこの群の 雌雄全例に投与中期以降投与部位の出血・痂皮形成並び に耳介の蒼白化がみられた。その他の群には著変はみら れず、またいずれの群でも死亡例はなかった。

CET (2g/kg) 投与群では全例に投与初期より投与部位の壊死・痂皮形成が認められ、このうち雄1例は自発運動の抑制・流涙・不規則な呼吸・削瘦を呈して最終投与日に死亡した。

投与終了後は CAZ 5g/kg 投与群にみられた耳介の蒼 白化は早期に消失した。しかし、CAZ (5g/kg) 及び CET 投与群の投与部位には回復期間終了まで脱毛が継 続してみられた。その他の群には著変はみられなかっ た。

(2) 体重変化

Fig. 2 に示すように、CAZ 0.6g/kg 以下の群では対 照群と同様の体重増加がみられた。しかし CAZ 2g/kg

Fig. 2 Body weight change in rats in the subacute toxicity test of CAZ for 35 days

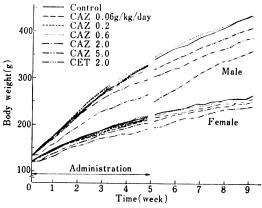
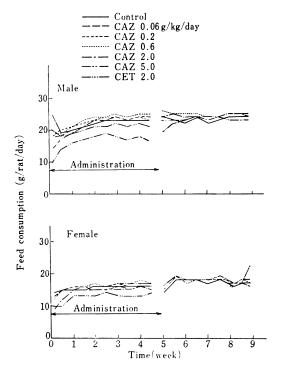
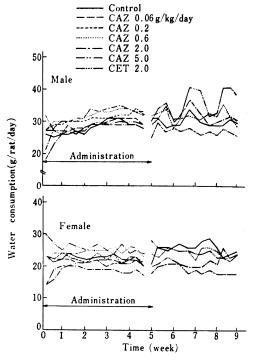



Fig. 3 Feed consumption of rats in the subacute toxicity test of CAZ for 35 days



群では投与中期以降、5g/kg 群では投与初期より、また CET 投与群では投与中期以降それぞれ雌雄とも体重増 加の抑制が認められた。

投与終了後早期に CAZ 2g/kg 群の体重に対照群との 有意差が認められなくなったが、 CAZ 5g/kg 群及び CET 投与群の体重は回復期間終了まで有意に低い値を 持続した。

(3) 飼料及び水消費量

Fig. 4 Water consumption of rats in the subacute toxicity test of CAZ for 35 days

飼料消費量には CAZ 5g/kg 群で投与初期より継続して、また CET 投与群で投与中期より断続的に対照群に比して減少がみられた。しかしその他の群には対照群との差はみられなかった。一方、投与終了後はすべての群において対照群との差は認められなかった (Fig. 3)。

水消費量については投与期間及び回復期間とも一部の群において対照群に比し増加または減少傾向がみられたが、CAZの投与量に関連する変化はみられなかった。またCET 投与群にも対照群との有意な差は認められなかった(Fig. 4)。

(4) 血液学的検査

投与終了時の検査において CAZ の投与量に関連する主な変化は 0.2g/kg 以上の群にみられた貧血傾向であった。すなわち雄では 0.2g/kg 以上でヘモグロビン量の減少, 0.6g/kg 以上で赤血球数の減少, 2g/kg 以上でヘマトクリット値の減少及び網状赤血球率の増加, 雌では 0.2g/kg 以上でヘモグロビン量及びヘマトクリット値の減少並びに網状赤血球率の増加, 2g/kg 以上で赤血球数の減少, 白血球数の増加が著明であった。また主として雄の 0.6 または 2g/kg 以上の群には MCV・血小板数及び好中球比率の増加, リンパ球比率及び MCHCの減少もみられた。一方, CET 投与群にも赤血球数・ヘモグロビン量及びヘマトクリット値の減少並びに網状

_{赤血球率}の増加の貧血傾向がみられ、さらに白血球数の _{増加}等も認められた (Table 3)。

回復期間終了時には CAZ 及び CET 投与群とも上記の変化は認められず、逆に赤血球数・ヘモグロビン量及びヘマトクリット 値の 増加、 網状赤血球率の減少等が 0.6 または 2g/kg 以上の群及び CET 投与群に認められた (Table 4)。

(5) 血清生化学的検査

投与終了時の検査においては CAZ 投与群では 0.6g/kg 以上の群にのみ投与量に関連する変化がみられた。すなわち雄では 0.6g/kg 以上でアルカリ性フォスファターゼ活性及び Cl⁻ の減少, 2g/kg 以上で総蛋白及びアルブミンの減少,5g/kg では血糖・クレアチニン及び Ca²⁺の減少並びに K⁺ の増加がみられ、また雌では 0.6g/kg 以上で総コレステロールの増加、アルカリ性フォスファターゼ活性の減少、2g/kg 以上でクレアチニンの減少、5g/kg では総蛋白・アルブミン・A/G・血糖・Ca¹⁺ 及び Cl⁻ の減少並びに K⁺ の増加が認められた。 CET 投与群においても総蛋白・アルブミン (以上雌雄両者)・A/G の減少(雌)・アルカリ性フォスファターゼ活性の減少(雄) 並びに K⁺ の増加(雌雄両者)が著明であった (Table 5)。

回復期間終了時においてみられた投与終了時と同様の変化は、CAZ 投与群では総蛋白(雄の 2g/kg 以上、雌の5g/kg) 及びアルブミン(雄の5g/kg) 減少であった。その他の変化としては2及び5g/kg 群の両者又は後者に総ビリルビン(雌)・GPT 活性(雄)の減少及びA/G(雌)の増加であった。一方、CET 投与群でも雄に総蛋白及びアルブミンの減少がみられ、また雌に総ビリルビン及び Ca²+ の減少が認められた(Table 6)。

(6) 尿検査

投与終了時において CAZ 投与群にみられた変化は、2g/kg 以上の投与で惹起された尿蛋白・ケトン体(雌雄)・潜血(雄)陽性例出現頻度の増加及び尿量の減少を伴う尿比重の上昇(5g/kg の雌)であった。 なお CAZ 投与群に認められた CI⁻ 排泄量の減少及び 5g/kg (雄)でみられた Na⁺ 排泄量の増加は投与された検体溶液の組成(対照群では NaCl, CAZ 投与群では Na₂CO₂)によるものと思われる。一方 CET 投与群でも尿量の減少を伴う尿比重の上昇(雌)並びに尿蛋白・ケトン体・潜血出現例の増加(雌雄)が認められ、検体溶液の組成によると思われる Na⁺ 及び CI⁻ 排泄量の減少もみられた (Table 7)。

回復期間終了時の検査では CAZ 5g/kg 群に尿量の減 少傾向及び尿比重の上昇(雌), CET 群に潜血出現例(雄) がみられた以外には対照群と異なる変化はみられなかっ た (Table 8)。

(7) 剖検所見

投与終了時には CAZ 投与群の 0.2 (雄) または 0.6 g/kg 以上 (雌) で投与部皮下組織の出血及び浮腫が認められ、高投与量群ほど顕著であった。また 2g/kg 以上のほぼ全例には内容物の貯留を伴う盲腸の 拡張、5g/kg 群の 雌に腎及び肝の黄褐色化並びに脾の腫大が認められた。 CET 投与群では投与部皮下組織に軽度な出血及び浮腫並びにその部位表面に痂皮の形成がみられた。

回復期間終了時の剖検では CAZ 5g/kg 群の投与部皮下に黄褐色斑及び栗粒大の血腫を認めたが、 CET 投与群も含めその他の群には著変はみられなかった。

なお CET 投与群の死亡例では胸腺の退縮・肺のうっ血・胃潰瘍・腎及び副腎の腫大・肝と横隔膜の癒着・精巣の被膜下出血等が認められた。

(8) 臓器重量

投与終了時における CAZ 投与群にみられた著明な変化は、雄では 0.2g/kg 以上で腎, 0.6g/kg 以上で肝及び盲腸, 2g/kg 以上で脾, 5g/kg で副腎の湿及び相対重量の両者の増加であり、雌では 0.6g/kg 以上で腎・肝・盲腸,5g/kg で脾の重量増加であった。また雄では2g/kg 以上で胸腺、雌では5g/kg で心の重量減少も認められた。その他の変化は体重増加抑制に伴う変化であった。

CET 投与群においても雌雄に腎及び盲腸の湿及び相対重量の増加、肝及び脾の相対重量の増加、雄のみに副腎の湿及び相対重量の増加、胸腺の湿及び相対重量の減少がみられた (Table 9)。

回復期間終了時には CAZ の 2,5g/kg 群及び CET 投与群に腎・肝・盲腸等の相対重量の増加及び体重増加の抑制に伴うと思われる変化が認められたが,CAZ 0.6g/kg 群には著変は認められなかった (Table 10)。

(9) 光顕所見

投与終了時における CAZ または CET によると思われる変化は肝・腎・脾・骨髄及び皮膚(投与部位)にのみ認められ、その他の組織には対照群と異なる変化はみられなかった(Table 11, 12)。 次に 対照群と異なる変化を示す。

肝: CAZ 投与群では小葉内に赤芽球の 髄外増殖巣(雄の 0.6 g/kg 以上, 雌の 5 g/kg; Photo.1), 小葉周辺部のクッパー星細胞の PAS 陽性沈着物を伴った腫大(雄の 0.6 g/kg 以上, 雌の 2 g/kg 以上; Photo.2), 小葉中心部実質細胞の腫大(風船細胞化:5 g/kg の雌雄合計 3/20 例; Photo.3)。CET 投与群ではクッパー星細胞の PAS 陽性沈着物を伴った腫大。

腎:CAZ 投与群では近位尿細管上皮内の大型・不整

Table 3 Hematological findings in rats subcutaneously administered with ceftazidime for 35 days (Mean \pm S.D.)

						CAZ (g/kg)			CET (g/kg)
			Control	90.0	0.2	9.0	2.0	5.0	2.0
RBC	O	(10*/mm³)	593±31	576±41	565±37	527±74*	482±38*	358±38*	461±38**
HP		(g/100ml)	$12.2\!\pm\!0.5$	11.7 ± 0.9	$11.6 \pm 0.6^{\bullet}$	11.3 ± 1.0	10.0±0.8*	7.4±0.6*	10.4 ± 1.0 **
Ħ		(%)	45.8 ± 2.0	46.6 ± 1.6	45.4 ± 1.5	44.0 ± 2.4	37.9±2.0*	30.8±2.8*	40.2 ± 2.7 *
MCV	Λ	(_µ ³)	77.21 ± 4.87	81.31 ± 7.49	80.45 ± 4.26	84.34 ± 7.77	78.82±4.99	$86.30\pm 9.13^{\bullet}$	87.26 ± 6.84
MCH	Ħ.	(/)	20.53 ± 1.34	20.44 ± 2.04	20.57 ± 1.59	21.55 ± 2.31	20.91±2.34	20.83 ± 2.10	22.62 ± 2.65
MC	MCHC	(%)	26.59 ± 0.71	25.19 ± 1.91	$25.56\pm1.14^{\bullet}$	25.58 ± 1.90	26.51±2.27	24.16 ± 0.95 *	25.87 ± 1.24
Ret	Reticu.	(%0)	20 ± 6	16 ± 5	22± 4	21 ± 4	77±21**	274±64**	39 ± 14 **
Plat.	ند	(10³/nnm³)	663 ± 124	664 ± 68	649 ± 79	717 ± 53	$831 \pm 152^{\bullet}$	$986 \pm 139**$	809±177
WBC	ွှ	(10 ² /mm³)	44 ± 8	43±10	36±7	44 ± 8	40±7	49±7	54±11*
	Eosino.		1.0±0.8	1.0±1.1	1.0±1.4	1.0±0.9	0.4±0.5	0.3±0.5*	8.0+8.0
Maie	Baso.		0	0	0	0	0	0	0
	Neutro.		12.9 ± 3.1	14.2 ± 3.4	15.1 ± 7.2	17.1 ± 6.5	20.4±6.9*	25.9 ± 4.9**	$23.2\pm11.1^*$
		Stab.	5.6 ± 1.9	6.6 ± 2.3	5.6 ± 4.6	$8.0 \pm 3.0^{\bullet}$	9.6±4.3*	5.5±2.4	7.1 ± 3.1
ē		Seg 2	3.9 ± 1.4	5.0±1.8	6.0 ± 3.0	4.8 ± 2.0	5.6±2.6	5.9±3.0	7.1±3.8
ıλ		Seg 3	1.8 ± 1.0	2.2 ± 1.5	2.7 ± 1.8	2.8 ± 1.6	2.4±1.0	7.0±1.7**	6.9 + 4.2
191 Sook		Seg 4	1.2 ± 0.8	0.4±0.7	0.7±0.7	0.9 ± 0.8	1.8±0.6	4.2±2.3**	1.8±1.6
nə	n.c.	Seg 5	0.4 ± 0.7	0	0.1 ± 0.3	0.7 ± 0.7	1.0±1.2	3.3±1.3**	0.3±0.7
I	Lympho.)	85.4 ± 3.1	83.6 ± 3.9	83.2 ± 8.1	80.8 ± 6.2	77.4±6.9**	72.0±5.2**	74.4±11.7
	Mono.		0.7 ± 0.8	1.2 ± 1.1	0.7 ± 0.7	1.1 ± 0.8	1.7±1.2	1.8±1.0	2.4±0.7
	Others		0	0	0	0.1 ± 0.3	0.1±0.3	0	0.1 ± 0.3
PT	1	(sec.)	13.6±1.9	14.7±2.6	14.2±2.7	14.5±2.3	12.6±1.7	12.7±1.6	13.3±1.7
RBC	U	(104/mm³)	553 ± 52	547 ± 53	523±67	503 ± 57	458±60**	377 ± 39**	496±43*
HP		(g/100ml)	11.4 ± 0.7	11.0 ± 0.5	$10.8\pm0.6^{\bullet}$	10.5 ± 0.7	9.4±0.5	8.0=1.2	9.9+0.9
H		(%)	45.1 ± 0.8	45.2±1.7	$43.6 \pm 1.6^{\bullet}$	$42.9\pm2.0^{*}$	39.1±2.2**	32.7±3.5**	39.9±3.2**
MCV	Λ	(_µ ³)	82.18 ± 7.47	82.96 ± 6.17	84.20 ± 9.03	86.03 ± 9.29	86.76 ± 13.86	86.86±8.28	80.74 ± 7.24
MCH	H	(77)	20.80 ± 1.68	20.20 ± 2.21	20.91 ± 3.46	21.17 ± 3.35	20.87 ± 3.09	21.23 ± 2.80	19.99 ± 1.90
MCHC	HC	(%)	25.38 ± 1.58	24.32 ± 1.25	24.73 ± 1.90	24.52 ± 1.93	24.12±1.15	24.40 ± 1.75	24.79 ± 1.51
Reticu.	icu.	(%%)	16 ± 4	20∓7	28±12*	31 ± 10 **	56±17**	128±27**	44±31°
Plat.	it.	(10³/mm³)	694 ± 119	674 ± 93	698 ± 113	730 ± 105	867±157*	1074±212**	938±257*
WBC	ည္က	(10 ² /mm ³)	31±8	33±7	38±14	37±9	40±8•	52±9**	53±11•
Пошор	Eosino.		0.8 ± 1.0	0.4 ± 0.5	0.2 ± 0.4	1.1 ± 1.0	0.1±0.3	0.4±0.7	9.0∓6.0
	Baso.		0	0	0	0	0	0	0
	Neutro.		12.7 ± 4.8	11.9±5.9	9.9±4.3	14.9 ± 5.1	12.8±4.5	$20.1\pm7.3^{\bullet}$	12.8±5.2
		Stab.	$7.1{\pm}3.7$	6.3 ± 2.2	5.4±3.2	6.2 ± 3.5	4.7±2.9	4.1±3.7	5.3 ± 3.4
ə		Seg 2	4.1 ± 2.6	3.3±1.8	3.0 ± 1.2	5.1 ± 2.0	3.0±1.6	4.7±3.7	4 .1±1.6
:s LGI		Seg 3	1.2 ± 1.1	1.4±1.4	0.8±0.8	$2.4 \pm 1.3^{\circ}$	2.8±1.1*	5.6±3.3	2.6 ± 1.6
тко		Seg 4	0.3 ± 0.5	0.7±1.3	0.4 ± 0.5	0.9 ± 1.4	0.9±1.2	2.6±2.5	0.6±0.7
Jei		Seg 5	0	0.2±0.6	0.3±0.5	0.3 ± 0.7	1.4±1.1	3.2±2.4	0.1±0.4
	Lympho.		85.5 ± 4.2	8.9∓0.98	88.6±4.2	82.5 ± 5.6	84.1±4.3	79.0±9.2	84.6±5.2
	Mono.		1.0 ± 0.8	1.7 ± 1.1	1.3±0.7	1.2±1.0	2.0±1.1	1.1±1.3	1.8±0.7
14	1	(sec.)	13.9+0.9	14.0+0.6	13.8+0.4	13.8+0.6	13.5+0.5	13 4+0 9	3 0 + 1 7 1

P<0.05, **: P<0.0

Table 4 Hematological findings in rats in 4-week recovery test after cessation of treatment with ceftazidime (Mean ± S.D.)

						CAZ (g/kg)		CET (g/kg)
				Control	0.6	2.0	5.0	2.0
	RB	C	(104/mm³)	474±50	454±24	471±58	506 ± 67	440±54
	НЬ		(g/100ml)	11.0±0.8	11.9±0.4*	12.0±0.5*	12.4±0.6**	11.8±0.8
	Ht		(%)	44.1±3.0	46.3±1.9	47.8±1.0*	50.3±1.3**	47.1±1.7*
	МС		(μ^1)	93.21±5.85	102.05±4.14**	102.73±12.14	100.74±13.66	108.45±13.74°
î	МС	Н	(γγ)	23.17±1.35	26.33±1.64**	25.70±3.15	24.83±3.02	27.13±3.80*
	1	CHC	(%)	24.89±1.28	25.80±1.13	25.01±0.73	24.71±1.13	25.01±1.46
	Re	ticu.	(%0)	18±4	14±3	14±5	12±3*	16±6
	Pla	ıt.	$(10^3/mm^3)$	595 ± 86	607±93	620±71	631±73	596 ± 62
	W	вс	$(10^{2}/\mathrm{mm}^{3})$	46±9	45±8	43±3	36±5°	33±5**
lale		Eosine	D.	0.7±0.8	1.3±1.0	0.7±0.8	0.7±0.5	0.7±0.8
		Baso.		0	0	0	0	0
		Neutr	0.	13.3±1.7	12.4±2.2	16.0±4.1	12.3±3.1	14.6±7.0
			Stab.	7.6±0.8	8.0±1.7	9.8±2.5	7.8±1.7	9.6±5.1
	iai (6		Seg 2	3.7±1.5	3.7±0.8	4.8±1.7	3.3±1.5	3.3±1.3
	cyte		Seg 3	1.4±1.0	0.7±0.5	1.3±0.8	1.0±0.9	1.7±1.6
	Differential leukocyte count (%)		Seg 4	0.6±0.5	0	0	0.2±0.4	0
	"		Seg 5	0	0	0	0	0
		Lympl	no:	85.3±1.7	85.7±3.0	81.5±4.3	84.0±5.9	83.4±7.8
		Mono.		0.7±0.8	0.9±0.4	1.8±0.8*	1.3±0.8	1.4±1.0
		Other	s	0	0	0	0	0
	PT		(sec.)	15.5±1.5	15.0±1.2	15.7±1.8	16.5±3.5	15.6±1.3
	RE	IC .	(10 ⁴ /mm³)	525±69	536±50	569±39	611 ± 48*	547±54
	- Нь		(g/100ml)	10.9±1.5	11.6±0.4	11.1±0.7	11.4 = 0.9	11.1±0.9
	Ht		(%)	44.7±1.2	44.0±0.9	46.3±1.5*	48.8±1.7**	45.5±1.5
	МС	cv	(μ^{3})	86.20±10.44	82.62±7.35	81.56±5.90	79.04 ± 4.62	83.77±8.14
	MC	СН	$(\gamma\gamma)$	21.17±4.29	21.73±2.30	19.45±1.40	18.27±1.84	20.40±1.74
	MC	CHC	(%)	24.42±3.41	26.27±0.88	23.90±1.49	23.12±1.83	24.48±2.46
	Re	ticu.	(%0)	22±7	15±6	12 ± 5*	9±2**	14±3*
	Pla	ıt.	$(10^3/\text{mm}^3)$	551±96	563±77	536±81	576±41	518±87
	W	3C	$(10^2/\mathrm{mm}^3)$	40±8	40±12	36±8	43±20	35±8
emale		Eosin	0.	1.1±1.2	0.9±0.9	1.4±1.0	1.0±1.0	1.6±0.8
		Baso.		0	0	0	0	0
		Neutr	0	11.9±4.7	12.4±4.1	16.7±4.6	13.1±2.7	13.9±4.1
			Stab.	6.6±2.7	6.7±2.0	8.9±2.5	7.6±2.1	7.6±2.4
	tial e 6)		Seg 2	3.0±1.2	4.0±1.9	6.0±2.1**	4.1±1.7	5.6±1.7**
	cyte t (%		Seg 3	1.6±1.3	1.3±1.1	1.7±1.4	0.9±0.7	0.4±0.5
	Differential leukocyte count (%)		Seg 4	0.4±0.8	0.4±0.5	0.1±0.4	0.6±0.5	0.3±0.5
	3		Seg 5	0.3±0.5	0	0	0	0
		Lympl	10.	86.6±4.9	85.1±4.6	80.0±5.6*	84.0±3.8	83.1±3.8
		Mono.		1.9±1.1	1.6±0.8	1.9±0.7	0.6±1.3	1.4±1.1
		Others	S	0	0	0	0	0
	PT		(sec.)	14.0±0.5	13.9±0.5	14.0±0.5	13.9±0.4	14.1±0.6

^{•:} P<0.05, •*: P<0.01

Table 5 Biochemical findings in sera of rats subcutaneously administered with ceftazidime for 35 days (Mean ± S.D.)

			·			CAZ (g/kg)			CEI (g/kg)
			Control	90.0	0.2	9.0	2.0	5.0	2.0
	T. protein	(g/100ml)	5.2±0.2	5.2±0.2	5.2±0.3	5.2±0.2	4.9±0.2**	4.5±0.2**	4.5±0.2**
	Alb.	(g/100ml)	3.5 ± 0.1	3.5 ± 0.2	3.6 ± 0.2	3.5 ± 0.1	3.3±0.2**	3.0±0.1**	2.9+0.2
	A/G		2.07 ± 0.21	2.05 ± 0.28	2.14 ± 0.19	2.09 ± 0.17	1.99 ± 0.25	1.98 ± 0.25	1.88 ± 0.19
	T. Choles.	(mg/100ml)	55 ± 16	52 ± 12	59 ± 11	$53\!\pm\!10$	58±14	53+9	43±8
-	Glucose	(mg/100ml)	129 ± 19	123 ± 14	125 ± 21	125±19	112±21	98±13**	114±11
	BUN	(mg/100ml)	11.9 ± 1.7	12.6±1.7	12.2 ± 1.6	12.0±0.7	12.9 ± 2.4	13.3±1.9	12.9 ± 2.1
_	T. Bilir.	(mg/100ml)	0.18 ± 0.10	0.28 ± 0.12	$0.21\!\pm\!0.12$	0.16 ± 0.09	0.23 ± 0.10	0.51 ± 0.51	0.20 ± 0.13
Male	Creati.	(mg/100ml)	0.7 ± 0.1	0.7 ± 0.1	0.6±0.1	0.7±0.1	0.6±0.1	0.6±0.1**	0.6±0.1
maic	Al-P	(K-A unit)	15.6 ± 2.5	15.5 ± 2.1	13.7 ± 1.8	12.7±2.7*	10.2 ± 1.9 **	8.9±2.6**	11.6±2.6**
	GOT	(Karmen unit)	114 ± 15	104 ± 19	113 ± 26	109 ± 29	107±14	101±16	117±33
	GPT	(Karmen unit)	19 ± 4	18+5	19±8	16 ± 4	18±8	18±4	23±8
	Calcium	(mg/100ml)	10.86 ± 1.64	10.31 ± 0.71	10.24 ± 0.82	10.26 ± 0.78	10.55 ± 0.58	9.36±0.67*	10.31 ± 0.80
	Sodium	(mEq/1)	138.2 ± 4.2	139.3±2.7	138.7 ± 2.3	139.3±2.9	140.2±2.2	139.6±2.1	139.3 ± 2.1
-	Potassium	(mEq/1)	4.83 ± 0.41	4.80±0.32	4.80 ± 0.30	5.09 ± 0.36	5.19±0.47	5.40±0.60°	5.40±0.44.
	Chloride	(mEq/1)	95.1 ± 1.9	94.3±3.1	94.4±1.9	91.9±2.4**	92.1±2.8°	92.3±3.2*	95.3±3.1
	T. Protein	(g/100ml)	5.2±0.4	5.1±0.2	5.4±0.4	5.3±0.3	5.2±0.2	4.8±0.3*	4.5±0.3**
	Alb.	(g/100ml)	3.6 ± 0.2	3.5 ± 0.1	$3.8\!\pm\!0.2$	3.7 ± 0.2	3.5 ± 0.1	3.1±0.2**	3.0±0.2**
	A/G		2.24 ± 0.27	$\textbf{2.27} \!\pm\! \textbf{0.17}$	$\textbf{2.32} \!\pm\! \textbf{0.30}$	2.23 ± 0.25	2.04±0.18	1.85 ± 0.18 *	1.95 ± 0.17^{4}
	T. Choles.	(mg/100ml)	52 ± 6	53±11	61 ± 12	70±10••	84±12.	78±13**	20+8
-	Glucose	(mg/100ml)	120 ± 17	122 ± 21	127±16	124±7	113±10	105±11	124±11
	BUN	(mg/100ml)	12.9 ± 1.4	13.1 ± 2.5	12.1 ± 1.3	11.9±2.5	12.1±1.5	12.2±2.8	13.3±1.2
	T. Bilir.	(mg/100ml)	0.23 ± 0.15	0.29 ± 0.14	0.18 ± 0.05	0.23 ± 0.09	0.32 ± 0.15	0.22±0.11	0.25 ± 0.13
Female	Creati.	(mg/100ml)	0.7 ± 0.1	0.7±0.1	0.7 ± 0.1	0.7±0.2	0.0±9.0	0.6±0.0*	0.7±0.1
	Al-P	(K-A unit)	$10.0{\pm}1.5$	9.6 ±1.3	9.1±1.7	7.7±0.9**	6.9±1.2*	6.3±1.1**	8.6±2.2
	GOT	(Karmen unit)	108 ± 26	108±15	95±15	96 ± 14	86±10•	91±18	106±18
	GPT	(Karmen unit)	14±3	15 ± 2	15±3	13±1	12±1	14±2	17±2
	Calcium	(mg/100ml)	11.49 \pm 2.24	11.71 ± 1.85	11.30 ± 1.53	11.21 ± 1.06	11.53±2.14	9.34±0.69*	10.89 ± 2.08
	Sodium	(mEq/1)	143.5 ± 2.0	143.3±1.5	143.7±2.8	143.3 ± 0.9	143.0±1.9	144.6±1.6	140.2±11.7
	Potassium	(mEq/1)	$\textbf{4.65} \!\pm\! 0.25$	5.28±0.76*	5.10±0.54	4.74±0.41	4.82±0.46	5.39±0.79	5.27±0.60*
	Chloride	(mEq/1)	102.4 ± 4.9	100.5±2.6	98.9±2.8	96.9±2.6	99.8±2.0	94.8±3.4**	100.2±1.9

• : P<0.05 •• : P<0.01

 $\begin{array}{lll} \textbf{Table 6} & \textbf{Biochemical findings in sera of rats in } \textbf{4-week recovery test after cessation} \\ & \textbf{of treatment with ceftazidime } & \textbf{(Mean} \pm S.D.) \end{array}$

			Control		CAZ (g/kg)		CET (g/kg)
			Control	0.6	2.0	5.0	2.0
	T. Protein	(g/100ml)	5.7±0.1	5.6±0.2	5.2±0.2**	5.3±0.3°	5.2±0.2*
	Alb.	(g/100ml)	3.6±0.2	3.5±0.1	3.4±0.1	3.4±0.1*	$3.3 \pm 0.2^{\bullet}$
	A/G		1.70±0.16	1.64±0.13	1.89±0.17	1.76±0.17	1.76 ± 0.10
	T. Choles.	(mg/100ml)	59±17	58±14	45 ± 12	42±9	42±5
	Glucose	(mg/100ml)	141±12	151±21	127±8*	124±19	135 ± 14
	BUN	(mg/100ml)	12.5±1.1	13.3±0.4	13.8±2.4	13.3±2.0	$\textbf{12.7} \pm \textbf{1.6}$
	T. Bilir.	(mg/100ml)	0.01±0.01	0.01±0.01	0.01±0.00	0.01±0.00	0.01±0.00
Male	Creati.	(mg/100ml)	0.7±0.1	0.7±0.1	0.7±0.1	0.6 ± 0.1	$\textbf{0.6} \pm \textbf{0.1}$
	Al-P	(K-A unit)	10.2±1.3	10.1±2.3	11.4±3.7	12.9±4.6	10.0±1.2
	GOT (I	Karmen unit)	101 ± 17	100±18	100±7	98±14	100 ± 14
	GPT (F	(armen unit	21±3	22±4	17±2	16±1*	19 ± 3
	Calcium	(mg/100ml)	11.57±2.44	11.04±1.06	10.09±0.66	10.96±1.74	10.86±1.53
	Sodium	(mEq/l)	142.7±1.3	141.4±1.1	141.6±2.4	143.2±1.6	142.9 ± 1.4
	Potassium	(mEq/l)	4.88±0.28	4.87±0.30	5.12±0.20	5.28±1.03	5.19±0.31
	Chloride	(mEq/l)	96.3±1.1	95.0±2.2	94.2±2.3	94.4±2.9	95.6 ± 1.8
	T. Protein	(g/100ml)	5.7±0.5	5.7±0.2	5.5±0.2	5.2±0.4*	5.4±0.2
	Alb.	(g/100ml)	3.7±0.3	3.9±0.1	3.8±0.2	3.6±0.2	$3.7\!\pm\!0.2$
	A/G	•	1.91±0.20	2.17±0.16*	2.24±0.35	2.25±0.18**	2.10±0.16
	T. Choles.	(mg/100ml)	70 ± 10	78±7	75 ± 10	64 ± 5	67 ± 19
	Glucose	(mg/100ml)	132±13	130±12	129±21	124±15	$131\!\pm\!14$
	BUN	(mg/100ml)	12.5±0.7	13.9±4.3	12.4±1.8	13.8±1.8	13.2 ± 1.5
emale	T. Bilir.	(mg/100ml)	0.14±0.04	0.11±0.03	0.08±0.03**	0.08 ± 0.04 •	0.08 ± 0.04
emaie	Creati.	(mg/100m!)	0.7±0.1	0.6±0.1	0.7±0.1	0.6±0.1	$\textbf{0.6} \pm \textbf{0.1}$
	Al-P	(K-A unit)	6.4 ± 0.7	6.7±1.3	7.2±1.7	7.4±1.1	$\textbf{6.2} \!\pm\! \textbf{2.1}$
	GOT (K	Carmen unit)	102 ± 15	106 ± 22	99±22	109 ± 17	106 ± 17
	GPT (k	Carmen unit)	18±3	17±2	13±1**	15±5	$20\!\pm\!3$
	Calcium	(mg/100ml)	10.99±0.95	10.42±0.84	10.25±0.47	10.20±0.43	9.94±0.30
	Sodium	(mEq/l)	141.3±1.9	139.0±4.8	140.9±1.7	140.1±1.5	$140.2 \!\pm\! 1.8$
	Potassium	(mEq/l)	4.53±0.32	4.46±0.25	4.38±0.34	4.24±0.25	4.48±0.39
	Chloride	(mEq/l)	96.4±2.8	96.1±2.6	96.5±1.5	95.4±2.8	95.9±1.5

^{**:} P<0.01

Table 7 Urinalysis in rats subcutaneously administered with ceftazidime for 35 days

			Ç			CAZ (g/kg)			CET (g/kg)
			Control	90.0	0.2	9.0	2.0	5.0	2.0
_	Volume	(ml/rat/16hr.)	18.9±9.4"	16.1±8.7	15.3±6.7	20.2±16.0	18.3±12.2	17.7±9.0	22.2 ± 9.1
	Specific gravity		1.023 ± 0.008	1.025 ± 0.007	1.025 ± 0.010	1.026 ± 0.011	1.027 ± 0.010	1.029 ± 0.008	1.022 ± 0.010
	Sodium	(mEq/rat)	0.37 ± 0.19	$0.13\pm0.09**$	$0.15\pm0.10^{\bullet}$	$0.20\pm0.09^*$	0.26 ± 0.12	0.74 ± 0.43*	$0.20\pm0.10^{*}$
	Potassium	(mEq/rat)	1.13 ± 0.18	1.09 ± 0.35	1.11 ± 0.49	1.50 ± 0.63	1.17 ± 0.27	0.99±0.30	1.00 ± 0.26
-	Chloride	(mEq/rat)	0.45 ± 0.21	0.29 ± 0.15	0.21±0.11**	0.22 ± 0.15	0.21 ± 0.16 **	0.20±0.26*	0.18 ± 0.09
	Hd	9	9 / 106	10 / 10	8 / 10	6 / 10	7 / 10	4 / 10	8/8
	•	7	1/10	0 / 10	2 / 10	4 / 10	3 / 10	5/10	8/0
		- 00	0 / 10	0 / 10	0 / 10	0 / 10	0 / 10	1/10	8/0
-	Protein	-	2 / 10	2 / 10	3 / 10	1/10	1/10	0 / 10	1/8
		+	2 / 10	0 / 10	2 / 10	2 / 10	1/10	3 / 10	2 / 8
Male		1 +	6 / 10	7 / 10	4 / 10	7 / 10	4 10	6 / 10	2/8
_		+	01/0	1/10	2 / 1	0 / 10	_	1/10	2/8
		-+-+	0 / 10	0 / 10	0 / 10	0 / 10	0 / 10	01,0	1/8
	Checes		01 / 01	01/01	01 / 01	10 / 10	10 / 10	10 . 10	8/8
	Keton hodies	1	10 / 10	10 / 10	10 / 10	10 / 10	9 / 10	8 / 10	8/9
	TACTOR DOGICS	+	0 / 10	01/0	0 / 10	01/0	1/10	2 / 10	8/6
_	Occult blood	- !	10 / 10	01 / 01	01/0	10 / 10	2 / 10	8 / 10	**************************************
	Occur mood	+	01/0	01/0	2 ()	01/0	01/6	2 / 6) o
-		- - +	0 10	0 / 10	1 / 10	01/0	01/1	0/10	, c
-	Hobilingan	- - - +	10 / 10	01 / 01	01 / 01	01 / 01	01 / 01	91 0 1	× / ×
-	OI GOITHIOREIL	-	01 /01	27 /27	10, 10	21 /21	27 /27		2
	Volume	(ml/rat/16hr.)	24.4 ± 14.1	15.3 ± 10.5	13.5±12.0	21.8 ± 17.0	19.5±16.1	12.1±6.3	12.5±5.7
	Specific gravity		1.016 ± 0.008	1.023±0.014	1.029 ± 0.013	1.020 ± 0.010	1.023 ± 0.011	1.029 ± 0.011	1.029±0.013
	Sodium	(mEq/rat)	0.23 ± 0.05	0.07±0.04	0.11 ± 0.05	0.11 ±0.04**	0.15 ± 0.06*	0.33 ± 0.12	0.23 ± 0.14
	Potassium	(mEq/rat)	0.70 ± 0.17	0.70 ± 0.13	0.76±0.18	0.78 ±0.22	0.73 ± 0.21	0.64±0.13	0.72 ± 0.13
	Chlorlde	(mEq/rat)	0.29 ± 0.10	0.18±0.08	0.24 ± 0.12	0.16±0.06**	0.19±0.11	0.16±0.12	0.12 ± 0.07
	Hd	9	10 / 10	7 / 10	9 / 10	8 / 10	10 / 10	2 / 10	8/1
		7	0 / 10	3 / 10	1/10	1/10	0 / 10	3 / 10	1/8
		∞	0 / 10	0 / 10	0 / 10	1/10	0/10	0 / 10	8/0
-	Protein	ı	5 / 10	5 / 10	3 / 10	3 / 10	1/10	0 / 10	8/ 0
Female		+1	3 / 10	1/10	1/10	3 / 10	3 / 10	2 / 10	8/0
		+	2 / 10	3 / 10	4 / 10	4 / 10	4 / 10	01 9	2/8
		++	0 / 10	1/10	2 / 10	0 / 10	2/10	1/10	3/8
		+++	0 / 10	0 / 10	0 / 10	0 / 10	0 / 10	1/10	8/0
	Glucose	ı	10 / 10	10 / 10	10 / 10	10 / 10	10 / 10	10 / 10	8/8
	Ketone bodies	ł	10 / 10	9 / 10	9 / 10	10 / 10	8/10	9 / 10	5/8
		+	0 / 10	1/10	1/10	0 / 10	2 / 10	1/10	3/8
	Occult blood	1	10 / 10		10 / 10	10 / 10	10 / 10	10/10	2 / 8
		+	0 / 10	0 / 10	0 / 10	0 / 10	0 / 10	0/10	1/8
_		+	0 / 10	0 7 10	0/10	0/10	01/0	0 / 10	8/0
_		+							

• : P<0.05, •• : P<0.01

Table 8 Urinalysis in rats in 4-week recovery test after cessation of treatment with ceftazidime

		C		CAZ (g/kg)		CET (g/kg)
		Control	0.6	2.0	5.0	2.0
	Volume (ml/rat/16hr.)	25.1±13.4°	14.0±6.7	13.2±7.4	21.2±15.2	18.6±9.0
	Specific gravity	1.020 ± 0.009	1.029±0.005*	1.031 ± 0.008 *	$1.022\!\pm\!0.009$	1.023 ± 0.007
	Sodium (mEq/rat)	0.12 ± 0.07	0.10 ± 0.05	0.08±0.06	0.10 ± 0.06	$\textbf{0.09} \pm \textbf{0.04}$
9.9	Potassium (mEq/rat)	1.26±0.32	1.21±0.30	1.16±0.09	1.00 ± 0.16	1.15 ± 0.09
	Chloride (mEq/rat)	0.29±0.17	0.24±0.07	0.19 ± 0.05	0.22 ± 0.05	$\textbf{0.20} \!\pm\! \textbf{0.08}$
	pH 6	4/7 6	7 / 7	5 / 7	4/7	4/7
	7	3/7	0/7	2/7	3 / 7	3/7
	Protein -	0/7	0/7	0/7	0/7	0/7
	±	0/7	0 / 7	0/7	0/7	1/7
ale	+	2/7	3/7	2/7	5 / 7	3/7
	++	5 / 7	2/7	4/7	2/7	3/7
	+++	0/7	2/7	1/7	0/7	0/7
	Glucose —	7/7	7/7	7/7	7 / 7	7/7
	Ketone bodies -	5/7	6/7	6/7	6/7	7/7
	+	2/7	1/7	1/7	1/7	0/7
	Occult blood —	7/7	5/7	7/7	7/7	5/7
	+	0/7	1/7	0/7	0/7	1/7
	++	0/7	0/7	0/7	0/7	1/7
	+++	0/7	1/7	0/7	0/7	0/7
	Urobilinogen ±	7/7	6/7	6/7	6/7	7/7
	+	0/7	1/7	1/7	1/7	0/7
	Volume (ml/rat/16hr.)	17.0±6.0	15.0±7.4	24.8±25.5	11.1±4.6	14.9±8.0
	Specific gravity	1.019±0.004	1.021±0.008	1.021±0.011	1.025±0.004*	1.023±0.00
	Sodium (mEq/rat)	0.10±0.05	0.05±0.04	0.08±0.05	0.12±0.08	0.11±0.05
	Potassium (mEq/rat)	0.77±0.15	0.68±0.11	$0.78 \!\pm\! 0.12$	0.87 ± 0.56	0.81±0.16
	Chloride (mEq/rat)	13.8±7.7	7.6±3.7	11.3±6.3	21.0±10.0	16.6±15.3
	pH 6	5/7	7/7	7 / 7	7 / 7	7/7
	7	2/7	0/7	0 / 7	0/7	0/7
	Protein -	4/7	1/7	2/7	0 / 7	2/7
male	±	0/7	0/7	1/7	1 / 7	1/7
	+	3/7	3/7	2/7	3 / 7	4/7
	++	0/7	2/7	2/7	3 / 7	0/7
	+++	0/7	1/7	0/7	0 / 7	0/7
	Glucose –	7/7	7 / 7	7/7	7/7	7/7
	Ketone bodies -	7/7	6/7	5 / 7	6 / 7	6/7
	+	0/7	1/7	2/7	1/7	1/7
	Occult blood -	7/7	7/7	7/7	7/7	7/7
	+	0/7	0/7	0 / 7	0/7	0/7
	++	0/7	0/7	0 / 7	0 / 7	0/7
	+++	0/7	0/7	0 / 7	0/7	0/7
1	Urobilinogen ±	7/7	7/7	7/7	7/7	7/7

^{•:} P<0.05, **: P<0.01

a: Mean±S.D., b: Number of animals elicited

Table 9 Organ weight of rats subcutaneously administered with ceftazidime for 35 days (Mean \pm S.D.)

					CAZ (g/kg)			CET (g/kg)
		Control	0.06	0.2	0.6	2.0	5.0	2.0
	Brain (g	g) 2.00±0.66 6) 0.65±0.03	1.98±0.05 0.64±0.04	2.00±0.04 0.64±0.04	1.99±0.06 0.64±0.06	1.99±0.05 0.66±0.04	1.90±0.04** 0.76±0.05**	1.99±0.07 0.74±0.07**
	Pituitary (mg	g) 9+1	9±1 2.99±0.58	10±1 3.38±0.49	9 ± 2 3.14 ± 0.79	9±1 3.03±0.49	8±2 3.15±0.86	10±2 3.77±0.94°
	Thymus (g			0.47±0.08 0.15±0.03	0.48±0.09 0.15±0.02	0.41±0.09° 0.14±0.03°	0.33 ± 0.05** 0.13 = 0.02**	0.36±0.04** 0.13±0.01**
	Thyroid (mg		12±3 4.12±0.88	.13±2 4.36±0.98	12±1 4.11±0.60	13±1 4.29±0.62	9 = 1° 3.84 ± 0.68	11±2 4.32±0.79
	Heart (g	(g) 1.01±0.04 0.33±0.01	1.02±0.07 0.33±0.02	1.06±0.12 0.34±0.03	1.06 + 0.10 0.34 + 0.02	1.00±0.10 0.33±0.03	0.85±0.10** 0.34±0.03	0.98±0.09 0.36±0.03*
	Lung (g	$\begin{array}{c c} (g) & 1.04 \pm 0.07 \\ (5) & 0.34 \pm 0.02 \end{array}$	1.02±0.07 0.33±0.01	1.05±0.06 0.34±0.01	1.06±0.11 0.34±0.03	1.02±0.08 0.34±0.02	0.91±0.11** 0.36±0.03	1.02±0.10 0.38±0.03**
Male	Liver (g	g) 9.44±0.60 3.09±0.16	10.05±1.25 3.24±0.23	10.11±1.08 3.24±0.21	10.84±1.31° 3.43±0.19°°	10.76±0.87** 3.55±0.17**	9.16±0.95 3.64±0.22**	9.30±0.89 3.43±0.15**
Marc	Stomach (g	g) 1.44±0.09 6) 0.47±0.03	1.45±0.10 0.47±0.02	1.50±0.14 0.48±0.02	1.45±0.14 0.46±0.04	1.56±0.18 0.52±0.06*	1.26±0.15** 0.50±0.05	1.29±0.30 0.47=0.10
	Spleen (g	g) 0.65 ± 0.06 6) 0.21 ± 0.02	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.64±0.07 0.21±0.02	$\begin{array}{c} 0.73 \pm 0.16 \\ 0.23 \pm 0.06 \end{array}$	0.76±0.15° 0.25±0.04°	1.07±0.21** 0.42±0.08**	0.75±0.19 0.28±0.07*
	Kidney (g	(5) 2.04±0.14 0.67±0.04	$\begin{vmatrix} 2.21 \pm 0.22 \\ 0.72 \pm 0.05^* \end{vmatrix}$	2.25±0.12** 0.72±0.03**	2.50±0.27** 0.79±0.05**	2.54 0.18 0.04 0.84 ± 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0	2.38±0.24** 0.95±0.05**	2.35±0.18** 0.87±0.03**
	Adrenal (mg		47±9 15.42±2.30	48±5 15.66±1.39	49±7 15.86±2.34	51±5 16.90±2.13	58±11° 23.07±4.09°°	56±6** 20.85±2.58**
	Testis (g	g) $\begin{vmatrix} 3.06 \pm 0.12 \\ 1.00 \pm 0.04 \end{vmatrix}$	3.15 ± 0.25 1.02 ± 0.08	$\begin{array}{c} 3.11 \pm 0.22 \\ 1.00 \pm 0.06 \end{array}$	$3.14\pm0.20 \\ 1.00\pm0.10$	3.11±0.19 1.03±0.09	3.01±0.23 1.20±0.07**	3.04±0.18 1.13±0.10**
	Epididymis (g	$g) \begin{vmatrix} 0.69 \pm 0.06 \\ 0.23 \pm 0.02 \end{vmatrix}$	$0.65\pm0.08 \\ 0.21\pm0.02$	0.66±0.06 0.21±0.02	$0.71\pm0.06 \\ 0.23\pm0.02$	0.69±0.06 0.23±0.02	0.65 = 0.07 0.26 = 0.02**	0.69±0.05 0.25±0.01**
	Prostate (g	(g) 0.43±0.11 0.14±0.04	$0.44\pm0.13 \\ 0.14\pm0.04$	0.46±0.09 0.15±0.04	$\begin{array}{c} 0.50 \pm 0.09 \\ 0.16 \pm 0.02 \end{array}$	0.44±0.07 0.15±0.03	0.37=0.07 0.14=0.03	0.44±0.08 0.16±0.03
	Caecum (g	(9) 1.46±0.16 0.48±0.05	$1.66\pm0.20^{\circ}$ 0.54 ± 0.09	1.53±0.12 0.49±0.05	1.71±0.16** 0.55±0.08*	2.00±0.31** 0.66±0.12**	2.03=0.29** 0.81=0.12**	1.64 = 0.19* 0.60 = 0.05**
	Brain (g	g) 1.94 ± 0.06 %) 0.96 ± 0.05	1.92±0.05 0.98±0.06	1.93±0.06 0.96±0.06	1.92±0.06 0.93±0.04	1.92±0.08 1.00±0.04	1.85=0.04** 1.01±0.05*	1.87 = 0.07** 0.95 ± 0.05
	Pituitary (mg		11±2 6.04±1.18	14±2* 7.12±1.33*	13±2 6.48±1.33	12±1 6.37±0.96	11±1 6.13=0.88	$ \begin{array}{c} 13 = 2 \\ 6.90 \pm 1.49 \end{array} $
	Thymus (g	(g) 0.37±0.06 0.18±0.03	0.36±0.07 0.19±0.04	$0.41\pm0.09 \\ 0.20\pm0.03$	0.45±0.06* 0.22±0.04*	$\begin{array}{c} 0.37 \pm 0.04 \\ 0.19 \pm 0.02 \end{array}$	0.31±0.04 0.17±0.02	$\begin{array}{c} \textbf{0.36} \!\pm\! 0.05 \\ \textbf{0.18} \!\pm\! \textbf{0.03} \end{array}$
	Thyroid (mg		12±3 6.10±1.93	13±3 6.77±1.64	$ \begin{array}{r} 11 \pm 2 \\ 5.34 \pm 1.17 \end{array} $	11±3 6.11±1.87	11=2 6.32±1.25	12 ± 4 6.46 ± 2.58
	Heart (g	g) 0.70 ± 0.05 0.35 ±0.01	0.67±0.04 0.34±0.01	0.70±0.04 0.35±0.01	$0.69\pm0.04 \\ 0.34\pm0.02$	$0.66\pm0.05 \\ 0.34\pm0.01$	0.60=0.04** 0.33=0.02*	$\begin{array}{l} 0.69 \pm 0.05 \\ 0.35 \pm 0.02 \end{array}$
Female	Lung (g		0.81±0.06 0.41±0.02	$0.85\pm0.06 \\ 0.43\pm0.02$	$0.86\pm0.07 \\ 0.42\pm0.02$	$0.81\pm0.06 \\ 0.42\pm0.02$	0.78±0.08 0.43±0.04	$0.87\pm0.11 \\ 0.44\pm0.05$
remare	Liver (g		6.02±0.46 3.07±0.14	6.49±0.66 3.23±0.17*	7.00±0.53** 3.39±0.16**	7.18±0.49** 3.75±0.19**	7.59±0.72** 4.16±0.34**	7.15 ± 1.64 3.60 ± 0.67
	Stomach (g	$\begin{array}{c c} (g) & 1.23 \pm 0.12 \\ 0.61 \pm 0.04 \end{array}$	1.14±0.08 0.58=0.04	1.23±0.12 0.61±0.05	$1.25\pm0.07 \\ 0.60\pm0.03$	$\begin{array}{c} 1.17 \pm 0.13 \\ 0.61 \pm 0.04 \end{array}$	1.13±0.11 0.62±0.04	$\begin{array}{c} 1.18 \pm 0.12 \\ 0.60 \pm 0.05 \end{array}$
	Spleen (g		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.52\pm0.08 \\ 0.26\pm0.03$	$0.55\pm0.04 \\ 0.27\pm0.02$	$0.54\pm0.08 \\ 0.28\pm0.03$	0.67=0.09** 0.37=0.04**	0.55±0.07 0.28±0.03*
	Kidney (g		1.48±0.10 0.75±0.03	1.55±0.12 0.77±0.05	1.66±0.13* 0.81±0.04*	1.73±0.21** 0.90±0.08**	1.78±0.13** 0.98±0.05**	1.74±0.15** 0.88±0.04**
	Adrenal (mg	1	1	$ \begin{array}{r} 61 \pm 6 \\ 30.87 \pm 2.76 \end{array} $	29.90±3.64			61 ± 5 31.31 \pm 3.76
	oterus (g		0.35±0.07 0.18±0.04	$0.38\pm0.07 \\ 0.19\pm0.03$	$0.39\pm0.08 \\ 0.19\pm0.04$	$0.37\pm0.08 \\ 0.19\pm0.04$	0.28±0.10* 0.15=0.05	0.34±0.07 0.17±0.03
	(mg	1	1	72 ± 12 36.28 ± 5.54	68 = 6 33.38 = 2.94	l .	II	68±6 34.96±4.33
	Caecum (g	(g) 1.18±0.11 0.59±0.06	1.20±0.12 0.61±0.06	$\begin{array}{c c} 1.27 \pm 0.16 \\ 0.63 \pm 0.06 \end{array}$	1.40±0.15** 0.68±0.08**	1.53±0.15** 0.80±0.06**	1.95±0.21** 1.07±0.09**	1.37±0.16** 0.69±0.06**

^{* :} P<0.05, ** : P<0.01

Table 10 Organ weight of rats in 4-week recovery test after cessation of treatment with ceftazidime (Mean \pm S.D.)

		Control		CAZ (g/kg)		CET (g/kg)
e.i		Control	0.6	2.0	5.0	2.0
.	Brain (g%)	$2.10\pm0.07 \\ 0.52\pm0.03$	2.11 ± 0.05 0.51 ± 0.04	2.11 ± 0.09 0.55 ± 0.02 *	2.04±0.07 0.62±0.03**	2.09±0.06 0.58±0.04**
	Pituitary (mg%)	10±1 2.55±0.36	10±1 2.59±0.29	10±2 2.82±0.66	10±1 3.16±0.60*	10±0 3.01±0.34*
	Thymus (g%)	0.41±0.08 0.10±0.02	0.40±0.05 0.10±0.01	0.39±0.04 0.10±0.01	$0.36\pm0.06 \\ 0.11\pm0.02$	0.32 ± 0.08 0.09 ± 0.02
	Thyroid (mg)	17±4 4.34=1.07	16±3 4.01±1.14	16±2 4.17±0.49	18±4 5.68±1.38	17±2 4.69±0.48
	Heart (g%)	1.19±0.06 0.29±0.02	1.20±0.10 0.29±0.02	1.16±0.11 0.30±0.01	1.05±0.05** 0.32±0.01*	1.17 ± 0.09 $0.32 \pm 0.01**$
	Lung (g) (g%)	1.22±0.09 0.30±0.02	$\begin{array}{c} 1.23 \pm 0.06 \\ 0.30 \pm 0.03 \end{array}$	1.20±0.13 0.31±0.03	1.08±0.08* 0.33±0.03	1.17±0.05 0.32±0.02*
	(g) Liver (g%)	11.98±1.31 2.92±0.12	12.91±1.31 3.14±0.18*	11.71 ± 1.28 3.05 ± 0.23	$ \begin{array}{c c} 10.90 \pm 1.43 \\ 3.30 \pm 0.47 \end{array} $	10.60 ± 1.13 2.92 ± 0.21
Male	Stomach (g%)	$ \begin{array}{c} 1.77 \pm 0.15 \\ 0.43 \pm 0.02 \end{array} $	1.76±0.13 0.43±0.02	1.70±0.14 0.44±0.03	1.58±0.12* 0.48±0.03**	1.65 ± 0.18 0.46 ± 0.05
	Spleen (g%)	0.80±0.10 0.20±0.02	0.80±0.11 0.19=0.02	0.71±0.16 0.18±0.03	0.72±0.05 0.22±0.02*	0.72 ± 0.11 0.20 ± 0.03
	Kidney (g%)	2.43±0.24 0.59±0.02	2.56±0.21 0.62±0.03	2.47±0.25 0.64±0.05	2.41±0.13 0.73±0.06**	2.53±0.09 0.70±0.03**
	Adrenal (mg)	$ \begin{array}{c c} 52 \pm 12 \\ 12.87 \pm 2.71 \end{array} $	54±4 13.24±0.64	53±7 13.83±1.93	56±8 17.09±2.99*	53 ± 4 14.86 ± 0.91
	Testis (g%)	3.30 ± 0.33 0.81 ± 0.11	3.28±0.17 0.80±0.09	3.23 ± 0.11 0.85 ± 0.06	3.19±0.10 0.97±0.06**	3.13 ± 0.29 0.87 ± 0.09
	Epididymis (g%)	1.01±0.07 0.25±0.02	1.01±0.06 0.25±0.02	1.00 ± 0.06 0.26 ± 0.02	0.96±0.08 0.29±0.01**	$0.97\pm0.10 \\ 0.27\pm0.03$
	Prostate (g%)	0.71 ± 0.09 0.17 ± 0.02	0.73 ± 0.15 0.18 ± 0.04	$0.70\pm0.09 \\ 0.18\pm0.02$	$0.68\pm0.15 \\ 0.20\pm0.04$	0.78±0.15 0.21±0.03*
	Caecum (g%)	$1.54\pm0.21 \\ 0.38\pm0.05$	$1.68\pm0.15 \\ 0.41\pm0.03$	1.69±0.21 0.44±0.06*	1.76±0.28 0.53±0.06**	1.51 ± 0.17 0.42 ± 0.05
ř	Brain (g%)	1.98±0.06 0.82±0.05	1.95±0.05 0.81±0.03	$1.95\pm0.08 \\ 0.84\pm0.07$	1.96±0.05 0.88±0.07	$1.93\pm0.07 \\ 0.82\pm0.08$
	Pituitary (mg)	15±3 6.14±1.19	15±4 6.38±1.94	14±3 6.44±1.37	14±1 6.48±0.58	15±4 6.52±1.44
	Thymus (g%)	0.31 ± 0.06 0.13 ± 0.03	$\begin{array}{c} 0.33 \pm 0.06 \\ 0.13 \pm 0.02 \end{array}$	0.31 ± 0.07 0.13 ± 0.03	$0.28\pm0.02 \\ 0.13\pm0.01$	$0.31\pm0.05 \\ 0.13\pm0.02$
	Thyroid (mg) (mg%)	11±3 4.65=1.56	13±1 5.71±0.47	13±2 5.75±0.90	14±2 6.46±0.79*	12±1 5.16±0.86
	Heart (mg/0) (g) (g%)	$\begin{array}{c} 4.03 \pm 1.30 \\ 0.74 \pm 0.04 \\ 0.30 \pm 0.01 \end{array}$	$\begin{array}{c} 0.75 \pm 0.05 \\ 0.31 \pm 0.03 \end{array}$	0.74 ± 0.06 $0.32 \pm 0.01^*$	0.72 ± 0.07 0.32 ± 0.01 *	0.77 ± 0.09 0.33 ± 0.01 *
	Lung (g) (g%)	$\begin{array}{c} 0.30 \pm 0.01 \\ 0.91 \pm 0.03 \\ 0.37 \pm 0.03 \end{array}$	$0.88 \pm 0.04 \\ 0.37 \pm 0.02$	$\begin{array}{c} 0.85 \pm 0.07 \\ 0.85 \pm 0.02 \end{array}$	$0.83\pm0.07^{\bullet} \ 0.37\pm0.02$	$0.94 \pm 0.08 \\ 0.40 \pm 0.02$
Female	Liver (g%) (g%)	6.58 ± 0.42 2.71 ± 0.12	$\begin{array}{c} 6.82 \pm 0.35 \\ 2.82 \pm 0.18 \end{array}$	7.21 ± 0.82 $3.11\pm0.20**$	6.86±0.80 3.07±0.16**	7.20±1.33 3.02±0.28*
	Stomach (g%)	1.33 ± 0.13 0.55 ± 0.03	$\begin{array}{c} 1.32 \pm 0.15 \\ 0.55 \pm 0.05 \end{array}$	1.36±0.06 0.59±0.05	1.26 ± 0.10 0.57 ± 0.03	$1.32 \pm 0.11 \\ 0.56 \pm 0.04$
	Spleen (g%)	$0.52\pm0.03 \\ 0.22\pm0.01$	$\begin{array}{c} 0.52 \pm 0.06 \\ 0.52 \pm 0.06 \\ 0.21 \pm 0.03 \end{array}$	$0.50\pm0.06 \\ 0.21\pm0.02$	0.48±0.03* 0.22±0.02	$\begin{array}{c} 0.52 \pm 0.08 \\ 0.22 \pm 0.02 \end{array}$
	Kidney (g)	1.51 ± 0.01 0.62 ± 0.04	1.57 ± 0.11 0.65 ± 0.06	1.60±0.16 0.69±0.05*	1.68±0.20 0.75±0.05**	$1.71\pm0.23 \\ 0.72\pm0.03$ **
	Adrenal (mg)	64±5 26.47±2.52	62±11 25.89±5.66	$ \begin{array}{c} $	64±6 29.14±2.72	64±5 27.22±2.57
	Uterus (g)	0.46±0.09 0.19±0.04	0.47±0.10 0.19±0.04	$\begin{array}{c} 0.42 \pm 0.06 \\ 0.18 \pm 0.02 \end{array}$	0.40±0.10 0.18±0.05	$\begin{array}{c} 0.46 \pm 0.07 \\ 0.20 \pm 0.04 \end{array}$
	Ovary (mg) (mg%)	65±9 26.98±3.83	65±9 27.17±3.85	78±14 33.78±4.60*	70±4 31.73±2.00*	69±7 29.54±3.40
Q	Caecum (g%)	1.28±0.10 0.53±0.05	$\begin{array}{c} 1.26 \pm 0.21 \\ 0.52 \pm 0.06 \end{array}$	1.36±0.11 0.59±0.05*	1.37±0.13 0.62±0.05**	$^{1.25\pm0.16}_{0.53\pm0.08}$

^{•:} P<0.05. ••: P<0.01

Table 11 Histopathological findings in male rats subcutaneously administered with ceftazidime for 35 days

Control	0.2 ± + # 1 0 0	CAZ (g/kg) 0.6 2.0 - ± + # - ± + #	5.0 - ± + # -	2.0 - ± + #
- ± + # - ± + # - Heart Inflammatory infiltration 10* 0 0 0 10 0 0 0 9	1 0 0			
Inflammatory infiltration 10* 0 0 0 10 0 0 0 9				+ +
Inflammatory infiltration 10* 0 0 0 10 0 0 0 9				
		10 0 0 0 10 0 0 0	10 0 0 0 9	0 0 0
Lung	000			
Inflammatory infiltration 7 3 0 0 10 0 0 0 10		10 0 0 0 10 0 0 0	10 0 0 0 9	000
Foamy cells 9 1 0 0 10 0 0 0 9	1 0 0	9 1 0 0 10 0 0 0	10 0 0 0 9	
	000	10 0 0 0 9 1 0 0	10 0 0 0 8	
Rectum				
Parasitization 10 0 0 0 10 0 0 9	1 0 0	10 0 0 0 10 0 0 0	10 0 0 0 9	000
Liver				
Congestion 9 1 0 0 10 0 0 0 10	0 0 0	10 0 0 0 10 0 0 0	10 0 0 0 9	0 0 0
Hemorrhage 9 1 0 0 10 0 0 10	0 0 0	10 0 0 0 10 0 0 0	10 0 0 0 9	0 0 0
Swelling of hepatocytes 10 0 0 0 10 0 0 10	0 0 0	10 0 0 0 10 0 0 0	9 1 0 0 9	0 0 0
Vacuolization of hepatocytes 5 5 0 0 4 5 1 0 4	2 4 0	1 8 1 0 4 4 1 1	6 3 1 0 4	5 0 0
Necrosis of hepatocytes 9 1 0 0 9 1 0 0 10	0 0 0	8 2 0 0 9 1 0 0	10 0 0 0 9	0 0 0
Inclusion body in hepatocytes 9 1 0 0 10 0 0 0 10	0 0 0	10 0 0 0 10 0 0 0	10 0 0 0 9	0 0 0
Fatty deposits in hepatocytes 0 1 4 0 0 1 4 0 0	0 5 0	0 0 5 0 0 4 1 0	0 3 2 0 0	3 2 0
Glycogen deposits in hepatocytes 0 7 3 0 0 7 3 0 0	6 4 0	0 4 6 0 0 10 0 0	0 10 0 0 0	8 1 0
Changes of Kupffer's cells 10 0 0 0 8 2 0 0 10	0 0 0	2 8 0 0 2 8 0 0	0 0 10 0 1	8 0 0
Inflammatory infiltration 9 1 0 0 8 2 0 0 8	2 0 0	8 2 0 0 10 0 0 0	8 2 0 0 7	2 0 0
Granuloma-like changes 6 4 0 0 4 6 0 0 3	7 0 0	6 4 0 0 10 0 0 0	6 4 0 0 4	5 0 0
Fibrosis 10 0 0 0 10 0 0 0 10	0 0 0	9 1 0 0 10 0 0 0	10 0 0 0 9	0 0 0
Erythroblastic infiltration 10 0 0 0 10 0 0 10	0 0 0	9 1 0 0 4 6 0 0	1 9 0 0 9	0 0 0
Pancreas				
Inflammatory infiltration 10 0 0 0 10 0 0 0 10	0 0 0	10 0 0 0 10 0 0 0	9 1 0 0 9	0 0 0
Bone marrow				
Fatty infiltration 0 10 0 0 0 6 4 0 1	7 1 0	5 5 0 0 10 0 0 0	10 0 0 0 8	0 0 0
Proliferation of bone marrow 10 0 0 0 10 0 0 0 9	0 0 0	10 0 0 0 4 6 0 0	0 0 10 0 3	5 0 0
Spleen				
Proliferation of erythroblasts 10 0 0 0 10 0 0 0 10	0 0 0	6 4 0 0 0 10 0 0	0 2 5 3 1	7 1 0
Mesenteric lymphonodi				
Sinus dilation 9 1 0 0 10 0 0 0 10	0 0 0	10 0 0 0 10 0 0 0	10 0 0 0 9	0 0 0
Kidney				
Regeneration of r.t.e.1 8 2 0 0 7 3 0 0 7	3 0 0	6 4 0 0 7 3 0 0	9 1 0 0 6	
Fatty deposits in r.t.e. 3 2 0 0 5 0 0 0 4	1 0 0	4 1 0 0 5 0 0 0	4 1 0 0 4	
Hyaline-like droplets in r.t.e. 0 9 1 0 0 9 1 0 0	1 9 0	0 1 7 2 0 0 2 8	0 0 5 5 0	
Eosinophilic droplets in r.t.e. 10 0 0 0 10 0 0 0	8 2 0	0 0 10 0 0 0 0 10	0 0 0 10 9	
Eosinophilic body in r.t.e. 0 3 6 1 0 4 5 1 1	4 5 0	3 4 3 0 9 1 0 0	10 0 0 0 10	
Thickening of b.m. ²¹ in r.t.e. 8 2 0 0 10 0 0 0 9	1 0 0	8 2 0 0 9 1 0 0	10 0 0 0 6	
Casts in renal tubuli 10 0 0 0 7 3 0 0 9	1 0 0	9 1 0 0 10 0 0 0	9 1 0 0 6	
Inflammatory infiltration 10 0 0 0 9 1 0 0 9	1 0 0	10 0 0 0 10 0 0 0	9 1 0 0 9	0 0 0
Pituitary gland				000
	0 0 0	9 1 0 0 10 0 0 0	10 0 0 0 9	000
Skin (treated area)				1 6 1
Hemorrhage 10 0 0 0 9 0 1 0 7		2 0 6 2 2 1 4 3	0 0 1 8 1	
Edema 10 0 0 0 10 0 0 0 9		10 0 0 0 10 0 0 0	8 0 1 0 8	
Inflammatory infiltration 10 0 0 0 9 1 0 0 9		2 6 2 0 2 2 4 2	0 1 8 0 1	
Hyperkeratosis 10 0 0 0 10 0 0 0 9		10 0 0 0 10 0 0 0	9 0 0 0 7	
Thickening of epidermis 10 0 0 0 10 0 0 0 9	1	9 1 0 0 9 1 0 0	9 0 0 0 6	_
Necrosis of epidermis 10 0 0 0 10 0 0 0 9	1	10 0 0 0 10 0 0 0	8 0 1 0 5	
Changes of collagen fibers 10 0 0 0 10 0 0 0 9		10 0 0 0 10 0 0 0	9 0 0 0 5	
Changes of adnexa 10 0 0 0 10 0 0 0 9	,	10 0 0 0 10 0 0 0	8 0 1 0 7	
Changes of subcutaneous tissue 10 0 0 0 9 1 0 0 7		2 7 1 0 2 4 2 2	0 0 1 8 1	
	0 1 0	10 0 0 0 10 0 0 0	9 0 0 0 9	

^{*:} Number of animals, -: No remarkable, \pm : Mild, +: Moderate, +: Severe changes ν : renal tubular epithelia, ν : basement membrane

Table 12 Histopathological findings in female rats subcutaneously administered with ceftazidime for 35 days

		Сот	itro	1									CA	١Z	(g,	/kg)									С	ET	(g/	/kg
						0.	06			0	. 2			0	.6			2	.0			5	.0			2	.0	
	-	±	+	#	_	±	+	#	-	±	+	#	-	±	+	#		±	+	#	-	+	+	#	-	±	+	+
Lung						-																						
Inflammatory infiltration	10	• 0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	9	1	0	(
Foamy cells	9	1	0	0	9	1	0	0	9	1	0	0	10	0	0	0	10	0	0	0	9	1	0	0	9	1	0	(
Granuloma-like changes	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	9	1	0	(
Calcification	9	1	0	0	9	1	0	0	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	(
Liver																												
Swelling of hepatocytes	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	8	1	1	0	10	0	0	(
Vacuolization of hepatocytes	2	6	2	0	0	4	4	2	1	4	5	0	4	3	2	1	1	8	1	0	4	5	1	0	0	5	4	1
Fatty deposits in hepatocytes	0	2	3	0	0	5	0	0	1	4	0	0	1	4	0	0	1	4	0	0	1	4	0	0	0	4	0	(
Glycogen deposits in hepatocytes	0	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	9	1	0	0	9	1	0	0	9	1	(
Changes of Kupffer's cells	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	7	3	0	0	4	6	0	0	6	4	0	•
Inflammatory infiltration	9	1	0	0	10	0	0	0	9	1	0	0	10	0	0	0	10	0	0	0	10	0	0	0	9	1	0	C
Granuloma-like changes	9	1	0	0	5	5	0	0	3	7	0	0	9	1	0	0	9	1	0	0	4	6	0	0	10	0	0	(
Erythroblastic infiltration	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	7	3	0	0	10	0	0	(
Bone marrow																												
Fatty infiltration	0	5	5	0	0	5	4	1	0	5	3	2	0	6	4	0	8	1	0	0	9	0	0	0	7	2	0	(
Proliferation of bone marrow	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	5	4	0	0	0	0	9	0	6	3	0	(
Spleen																												
Proliferation of erythroblasts	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	0	9	1	0	9	0	0	(
Kidney																												
Regeneration of r.t.e.1)	10	0	0	0	9	1	0	0	9	1	0	0	9	1	0	0	8	2	0	0	10	0	0	0	8	2	0	(
Fatty deposits in r.t.e.	0	0	4	1	0	0	5	0	0	1	4	0	0	0	5	0	0	2	3	0	0	5	0	0	0	0	5	C
Hyaline-like droplets in r.t.e.	0	10	0	0	0	10	0	0	0	5	5	0	0	0	2	8	0	0	0	10	0	0	0	10	0	0	1	g
Thickening of b.m.2 of r.t.e.	10	0	0	0	10	0	0	0	10	0	0	0	9	1	0	0	8	2	0	0	10	0	0	0	8	2	0	C
Casts in renal tubuli	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	9	1	0	0	10	0	0	0	10	0	0	0
Inflammatory infiltration	9	1	0	0	10	0	0	0	10	0	0	0	9	1	0	0	10	0	0	0	8	2	0	0	10	0	0	0
Calcification	10	0	0	0	10	0	0	0	8	2	0	0	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	C
Skin (treated area)																												
Hemorrhage	8	0	2	0	8	1	1	0	8	2	0	0	2	5	3	0	1	3	2	4	0	1	2	7	1	2	2	3
Inflammatory infiltration	10	0	0	0	9	1	0	0	8	2	0	0	2	7	1	0	1	4	5	0	0	3	7	0	0	1	7	0
Slough formation	10	0	0	0	10	0	0	0	10	0	0	0	9	1	0	0	10	0	0	0	10	0	0	0	6	2	0	0
Parakeratosis	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	7	1	0	C
Thickening of epidermis	10	0	0	0	10	0	0	0	10	0	0	0	9	0	1	0	9	1	0	0	8	1	1	0	2	0	6	(
Necrosis of epidermis	10	0	0	0	10	0	0	0	10	0	0	0	9	1	0	0	10	0	0	0	10	0	0	0	2	0	6	0
Changes of collagen fibers	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	2	3	3	(
Changes of adnexa	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	9	1	0	0	2	0,	6	(
Changes of subcutaneous tissue	8	2	0	0	8	2	0	0	1	0	0	0	5	4	1	0	2	1	6	1	0	0	3	7	1	0	0	7
Granuloma-like changes	10	_	0	0		_	0	0	10		0	0	10	-	0		10		0	0	10	-	0	0	5	2	1	ď

^{*:} Number of animals, -: No remarkable, $\pm:$ Mild, +: Moderate, #: Severe changes

形・PAS 陰性または一部弱陽性の好酸性滴状沈着物(雄の 0.2g/kg 以上: Photo. 4,5)及び大型・不整形・PAS 陽性の硝子滴様沈着物(雌雄の 0.2g/kg 以上; Photo. 6), eosinophilic body の減少(雄の 2g/kg 以上),脂肪沈着の減少傾向(雌の 2g/kg 以上)。CET 投与群では近位尿細管上皮内の大型・不整形・PAS 陽性の硝子滴様沈着物(雌雄: Photo. 7), eosinophilic body の減少(雄)。

脾: CAZ 投与群(雄の 0.6 g/kg 以上, 雌の 5 g/kg) 及び CET 投与群(雄) の赤脾髄内赤芽球の髄外増殖巣 (Photo.8)。

骨髄: CAZ 投与群では実質内脂肪細胞の減少(雄の 0.6 g/kg 以上, 雌の 2 g/kg 以上; Photo. 9), 実質の増生 (雌雄の 2 g/kg 以上)。 CET 投与群 (雌雄) の実質 内脂肪細胞の減少及び実質の増生。

皮膚(投与部位): CAZ 投与群では真皮内あるいは皮

n: renal tubular epithelia, 21: hasement membrane

Table 13 Histopathological findings of male rats in 4-week recovery test after cessation of treatment with ceftazidime

Lung Congestion 7, 0 0 0 0 7 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.0 - ± + 7 0 0 6 1 0 7 0 0 6 1 0 7 0 0 6 1 0 3 1 3 0 3 1 0 2 5	0 0 0 0 0 0 0 0 0 0	7 6 3 7 6	0 1 4 0	0 0 0 0 0 0 0 0 0 0	6 6 5 5		0 0 0
Lung	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 6 1 0 6 1 0 7 0 0 6 1 0 3 1 3 0 3 1	0 0 0 0 0 0 0 0 0 0	6 3 7 6	0 1 4 0	0 0 0 0 0 0	6 6 5	1 1 2	0 0
Congestion	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 1 0 6 1 0 7 0 0 6 1 0 3 1 3 0 3 1	0 0 0 0	6 3 7 6	1 4 0	0 0 0 0 0 0	6 5	1 2	0
Inflammatory infiltration	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 1 0 6 1 0 7 0 0 6 1 0 3 1 3 0 3 1	0 0 0 0	6 3 7 6	1 4 0	0 0 0 0 0 0	6 5	1 2	0
Foamy cells Granuloma-like changes Calcification Calcification Calcification Calcification Calcification Calcification Vacuolization of hepatocytes Vacuolization of hepatocytes Calcification Vacuolization of hepatocytes Calcification C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 1 0 7 0 0 6 1 0 3 1 3 0 3 1	0 0 0	3 7 6	0	0 0	5	2	0
Granuloma-like changes 5 2 0 0 7 0 Calcification 7 0 0 0 7 0 Liver Vacuolization of hepatocytes Vacuolization of hepatocytes 0 3 1 0 2 4 Fatty deposits in hepatocytes 0 2 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 7 0 0 7 0 0 7 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 5 0 0 0 5 2 0 0 7 0 0 0 7 0 0 0 7 0 0 0 5 0 0 0 5 0 0 0 5 0 0 5 0 <td>0 0 0 0 1 0 3 0 7 0 0 0 0 0 0 0</td> <td>7 0 0 6 1 0 3 1 3 0 3 1</td> <td>0 0</td> <td>7 6</td> <td>0</td> <td>0 0</td> <td>1</td> <td>_</td> <td>-</td>	0 0 0 0 1 0 3 0 7 0 0 0 0 0 0 0	7 0 0 6 1 0 3 1 3 0 3 1	0 0	7 6	0	0 0	1	_	-
Calcification 7 0 0 0 7 0 Liver Vacuolization of hepatocytes 3 3 1 0 2 4 Fatty deposits in hepatocytes 0 3 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0	0 0 1 0 3 0 7 0 0 0 0 0 0 0	6 1 0 3 1 3 0 3 1	0	6	-		5	1	
Liver Vacuolization of hepatocytes 3 3 1 0 2 4 Fatty deposits in hepatocytes 0 3 1 0 0 1 Glycogen deposits in hepatocytes 0 2 5 0 0 0 0 7 Changes of Kupffer's cells 5 2 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 0 7 0 0 0 5 0 0 0 5 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 0 0	1 0 3 0 7 0 0 0 0 0 0 0	3 1 3 0 3 1	0	•	1	0 0			1
Vacuolization of hepatocytes 3 3 1 0 2 4 Fatty deposits in hepatocytes 0 3 1 0 0 1 Glycogen deposits in hepatocytes 0 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 5 2 0 0 5 0 0 5 0 0 0 5 0 0 0 5 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>3 0 7 0 0 0 0 0 0 0</td> <td>0 3 1</td> <td></td> <td>3</td> <td></td> <td></td> <td>6</td> <td>1</td> <td>0</td>	3 0 7 0 0 0 0 0 0 0	0 3 1		3			6	1	0
Fatty deposits in hepatocytes Glycogen deposits in hepatocytes Changes of Kupffer's cells Proliferation of bile ducts Inflammatory infiltration Granuloma-like changes Inflammatory infiltration Fatty infiltration Fatty infiltration Atrophy of r.t.e. ¹⁰ Regeneration of r.t.e. Fatty deposits in hepatocytes 0	3 0 7 0 0 0 0 0 0 0	0 3 1		3					
Glycogen deposits in hepatocytes	7 0 0 0 0 0 0 0		0		4	0 0	2	3	2
Changes of Kupffer's cells 5 2 0 0 7 Proliferation of bile ducts 6 1 0 0 7 0 Inflammatory infiltration 7 0 0 0 7 0 Granuloma-like changes 1 6 0 0 2 5 Pancreas Inflammatory infiltration 6 1 0 0 7 0 Bone marrow Fatty infiltration 0 5 2 0 0 5 Kidney Atrophy of r.t.e." 7 0 0 0 7 0 Regeneration of r.t.e. 2 4 1 0 2 5 Fatty deposits in r.t.e. 3 1 0 0 4 0	0 0 0 0 0 0	0 2 5	- 1	0	4	0 0	0	3	1
Proliferation of bile ducts 6 1 0 0 7 0 Inflammatory infiltration 7 0 0 0 7 0 Granuloma-like changes 1 6 0 0 2 5 Pancreas Inflammatory infiltration 6 1 0 0 7 0 Bone marrow Fatty infiltration 0 5 2 0 0 5 Kidney Atrophy of r.t.e. ¹⁰ 7 0 0 0 7 0 Regeneration of r.t.e. 2 4 1 0 2 5 Fatty deposits in r.t.e. 3 1 0 0 4 0	0 0		0	0	5	2 0	0	2	5
Inflammatory infiltration	0 0	3 4 0	0	1	6	0 0	1	6	0
Granuloma-like changes 1 6 0 0 2 5 Pancreas Inflammatory infiltration 6 1 0 0 7 0 Bone marrow Fatty infiltration 0 5 2 0 0 5 Kidney Atrophy of r.t.e. ¹⁰ 7 0 0 0 7 0 Regeneration of r.t.e. 2 4 1 0 2 5 Fatty deposits in r.t.e. 3 1 0 0 4 0	- 1	6 1 0	0	7	0 (0 0	7	0	0
Pancreas 6 1 0 0 7 0 Inflammatory infiltration 6 1 0 0 7 0 Bone marrow 0 5 2 0 0 5 Fatty infiltration 0 5 2 0 0 5 Kidney 7 0 0 0 7 0 Atrophy of r.t.e. ¹⁰ 7 0 0 0 2 5 Regeneration of r.t.e. 2 4 1 0 2 5 Fatty deposits in r.t.e. 3 1 0 0 4 0	0 0	2 5 0	0	7	0 (0 0	6	1	0
Inflammatory infiltration 6 1 0 0 7 0 Bone marrow Fatty infiltration 0 5 2 0 0 5 Kidney Atrophy of r.t.e. ¹⁰ 7 0 0 0 7 0 Regeneration of r.t.e. 2 4 1 0 2 5 Fatty deposits in r.t.e. 3 1 0 0 4 0		1 6 0	0	1	6 (0 0	3	4	0
Bone marrow 0 5 2 0 0 5 Fatty infiltration 0 5 2 0 0 5 Kidney 7 0 0 0 7 0 Regeneration of r.t.e. 2 4 1 0 2 5 Fatty deposits in r.t.e. 3 1 0 0 4 0									
Fatty infiltration 0 5 2 0 0 5 Kidney Atrophy of r.t.e. 7 0 0 0 7 0 Regeneration of r.t.e. 2 4 1 0 2 5 Fatty deposits in r.t.e. 3 1 0 0 4 0	0 0	7 0 0	0	7	0 (0 0	7	0	0
Kidney 7 0 0 7 0 Atrophy of r.t.e. ¹⁾ 7 0 0 7 0 Regeneration of r.t.e. 2 4 1 0 2 5 Fatty deposits in r.t.e. 3 1 0 0 4 0									
Atrophy of r.t.e. 10 7 0 0 0 7 0 Regeneration of r.t.e. 2 4 1 0 2 5 Fatty deposits in r.t.e. 3 1 0 0 4 0	1 0	1 6 0	0	0	4 :	2 0	0	6	0
Regeneration of r.t.e. 2 4 1 0 2 5 Fatty deposits in r.t.e. 3 1 0 0 4 0									
Fatty deposits in r.t.e. 3 1 0 0 4 0	0 0	7 0 0	0	7	0 (0 0	6	1	0
Fatty deposits in r.t.e. 3 1 0 0 4 0	0 0	1 6 0	0	3		1 0	4	2	1
Hyaline-like droplets in r.t.e. 0 7 0 0 0 7	0 0	4 0 0	0	4		0 0	3	1	0
	0 0	0 3 4	0	0	4 3	3 0	0	0	4
Eosinophilic droplets in r.t.e. 7 0 0 0 3 4	0 0	0 7 0	0	0		3 0	7	0	0
Yellow-brown droplets in r.t.e. 7 0 0 0 3 4	0 0	2 3 2	0	0		4 3	1	5	1
Eosinophilic body in r.t.e. 0 4 2 1 0 5	2 0	2 5 0	- 1	5		0 0	2	3	2
Dilation of renal tubuli 7 0 0 0 7 0	0 0	7 0 0		7		0 0	6	1	0
Thickening of b.m. ²⁾ in r.t.e. 4 3 0 0 6 1	0 0	7 0 0	ŀ	3	-	0 0	6	1	0
Casts in renal tubuli 4 2 1 0 4 3	0 0	5 2 0		6		1 0	6	0	1
Inflammatory infiltration 6 1 0 0 7 0	0 0	7 0 0	ŀ	6		0 0	6	0	1
Fibrosis 7 0 0 0 7 0	0 0	7 0 0	ŀ	7		0 0	6	1	0
Calcification 7 0 0 0 7 0	0 0	6 0 1	0	7	-	0 0	7	0	0
Skin (treated area)		• • •		•	•				
Hemorrhage 7 0 0 0 7 0	0 0	7 0 0	0	7	0 (0 0	5	2	0
Inflammatory infiltration 7 0 0 0 7 0	0 0	7 0 0		6		0 0	1	4	2
Slough formation 7 0 0 0 7 0	0 0	7 0 0	ŀ	7		0 0	5	0	2
Thickening of epidermis 7 0 0 0 7 0	0 0	7 0 0		7		0 0	0	1	6
Necrosis of epidermis 7 0 0 0 7 0	0 0	7 0 0	[7	-	0 0	5	0	0
Ulceration 7 0 0 0 7 0	0 0	7 0 0		7		0 0	5	0	1
Changes of collagen fibers 7 0 0 0 7 0	0 0	7 0 0		7		0 0	0	1	6
Changes of subcutaneous tissue 7 0 0 0 7 0		6 1 0	1	1		0 0	0	2	5
Granuloma-like changes 7 0 0 0 7 0			U	1	0 (2		
Fibrosis 7 0 0 0 7 0	0 0	7 0 0	0	6	1 (0 0		4	1

ullet : Number of animals, - : No remarkable, \pm : Mild, + : Moderate, + : Severe changes

^{1):} renal tubular epithelia, 2): basement membrane

Table 14 Histopathological findings of female rats in 4-week recovery test after cessation of treatment with ceftazidime

_		Con	trol		CAZ (g/kg)													CET (g/kg)			
					0.6			2.0				5.0				2.0					
	_	±	+	#	_	±	+	#		±	+	#		±	+	#	_	±	1	++	
Lung																					
Inflammatory infiltration	7*	0	0	0	6	0	1	0	7	0	0	0	7	0	0	0	7	0	0	0	
Foamy cells	7	0	0	0	6	0	1	0	7	0	0	0	5	2	0	0	7	0	0	0	
Granuloma-like changes	7	0	0	0	6	1	0	0	6	1	0	0	6	1	0	0	6	1	0	0	
Calcification	6	1	0	0	7	0	0	0	7	0	0	0	7	0	0	0	6	1	.0,	0	
Rectum																	4	¥, '			
Parasitization	7	0	0	0	7	0	0	0	6	1	0	0	7	0	0	0	7	0	0	0	
Liver																					
Vacuolization of hepatocytes	2	3	2	0	1	5	1	0	3	1	3	0	1	4	2	0	0	1	0	6	
Fatty deposits in hepatocytes	0	4	0	0	0	4	0	ð	0	4	0	0	0	4	0	0	0	4	0	0	
Glycogen deposits in hepatocytes	0	7	0	0	0	7	0	0	0	7	0	0	0	7	0	0	0	6	1	0	
Changes of Kupffer's cells	6	1	0	0	7	0	0	0	6	1	0	0	6	1	0	0	6	1	0	0	
Inflammatory infiltration	7	0	0	0	7	0	0	0	6	1	0	0	7	0	0	0	6	1	0	0	
Granuloma-like changes	3	4	0	0	2	5	0	0	3	4	0	0	2	5	0	0	1	6	0	0	
Kidney																					
Regeneration of r.t.e."	7	0	0	0	7	0	0	0	7	0	0	0	5	2	0	0	5	2	0	0	
Fatty deposits in r.t.e.	0	0	4	0	0	0	4	0	0	0	3	1	0	1	3	0	0	0	4	0	
Hyaline-like droplets in r.t.e.	0	7	0	0	0	6	1	0	0	0	3	4	0	0	0	7	0	0	2	5	
Yellow-brown droplets in r.t.e.	7	0	0	0	3	4	0	0	0	3	4	0	0	0	2	5	0	3	1	3	
Thickening of b.m.2 in r.t.e.	7	0	0	0	7	0	0	0	7	0	0	0	6	1	0	0	7	0	0	0	
Casts in renal tubuli	7	0	0	0	7	0	0	0	7	0	0	0	6	1	0	0	6	1	0	0	
Inflammatory infiltration	7	0	0	0	7	0	0	0	7	0	0	0	3	4	0	0	5	2	0	0	
Calcification	7	0	0	0	7	0	0	0	6	1	0	0	7	0	0	0	7	0	0	0	
Uterus	1								}												
Changes of mucosal epithelia	7	0	0	0	7	0	0	0	6	1	0	0	6	1	0	0	7	0	0	0	
Skin (treated area)																					
Hemorrhage	7	0	0	0	7	0	0	0	7	0	0	0	6	1	0	0	7	0	0	0	
Inflammatory infiltration	7	0	0	0	7	0	0	0	7	0	0	0	7	0	0	0	6	1	0	0	
Thickening of epidermis	7	0	0	0	7	0	0	0	7	0	0	0	6	0	1	0	5	1	1	0	
Changes of collagen fibers	7	0	0	0	7	0	0	0	7	0	0	0	6	1	0	0	4	1	2	0	
Changes of adnexa	7	0	0	0	7	0	0	0	7	0	0	0	7	0	0	0	6	0	1	0	
Changes of subcutaneous tissue	6	1	0	0	7	0	0	0	5	1	1	0	4	3	0	0	1	2	4	0	
Granuloma-like changes	6	1	0	0	7	0	0	0	7	0	0	0	6	1	0	0	5	2	0	0	

^{*:} Number of animals, -: No remarkable, ±: Mild, +: Moderate, +: Severe changes

下における出血及びその周辺におけるヘモジデリン沈 着・炎症性細胞浸潤・皮下結合織の増生・痂皮形成・限 局性角化亢進・錯角化並びに表皮の肥厚・壊死または脱 落、真皮膠原線維の変性、付属器の変性・線維化(雄の 0.2g/kg 以上、雌の 0.6g/kg 以上; Photo.10, 11)。 CET 投与群では上記の他、皮下に石灰沈着を伴う肉芽 腫の形成。

回復期間終了時には次に示すように肝・腎及び皮膚に のみ変化がみられた (Table 13, 14)。

肝: CAZ 投与群 (雄の 0.6g/kg 以上) 及び CET 投 与群(雄) における投与終了時よりは軽度なクッパー星

細胞の腫大。

腎・投与終了時よりは軽度な近位尿細管上皮内好酸性 沈着物 (CAZ 0.6 g/kg 以上の雄)・硝子滴様沈着物 (CAZ 2 g/kg 以上及び CET 群の雌雄) の増加, eosinophilic body の減少 (CAZ 2 g/kg 以上及び CET 群の 雄)。新たな変化として近位尿細管上皮内に大型・不整 形・PAS 弱陽性の黄褐色沈着物 (CAZ 0.6 g/kg 以上 及び CET 群の雌雄; Photo.12, 13)。

皮膚(投与部位): CET 投与群のみに投与終了時より は軽度な炎症性変化・肉芽腫及び線維化。

投与終了時及び回復期間終了時にみられた肝, 腎, 脾,

n: renal tubular epithelia, 2: basement membrane

骨髄及び皮膚(投与部位)の上記の変化を CAZと CET の同一投与量群で比較した場合、皮膚(投与部位)の変化は CET 群で明らかに強かったが、他の臓器での変化は CAZ、CET ともほぼ同程度の強さを示した。

(10) 電顯所見

Photo 1 Liver (CAZ 5.0g/kg, male) Erythroblastic infiltration and vaculolization of perilobular hepatocytes (H. E., ×400)

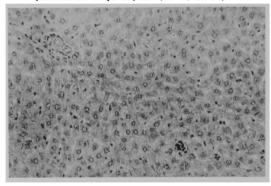


Photo. 2 Liver (CAZ 5.0g/kg, male) Swelling and PAS-positive deposits in Kupffer's cells in perilobular zone (PAS, ×200)

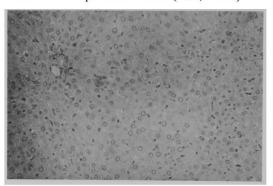
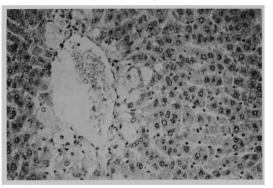



Photo. 3 Liver (CAZ 5.0g/kg, male) Swelling (ballooning) of hepatocytes in centrilobular zone (H.E., ×400)

投与終了時には CAZ 投与群の肝細胞で滑面小胞体の 軽度な増加及び一部の凝集(雄の 5g/kg, 雌の 2g/kg以 上; Photo. 14), 腎近位尿細管上皮で高電子密度のライ ソゾームの増加(雄の 0.2g/kg 以上, 雌の 0.6g/kg以 上; Photo. 15) 及び低電子密度の内容中に高電子密度の

Photo. 4 Kindney (CAZ 5.0 g/kg, male) Eosinophilic droplets in proximal tubular epithelia (arrows) (H. E., ×400)

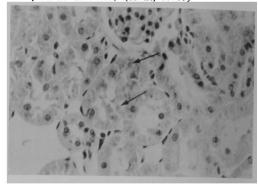


Photo. 5 Kidney (CAZ 5.0g/kg, male) PAS-negative droplets in proximal tubular epithelia (arrows) (PAS, ×400)

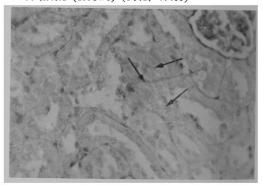



Photo. 6 Kidney (CAZ 5.0 g/kg, female) Hyaline-like droplets (PAS-positive) in proximal tubular epithelia (PAS, ×400)

小体あるいはミエリン構造物を含むライソゾームの出現(雄の 5g/kg,雌の 2g/kg 以上; Photo. 16)がみられた。CET 投与群の雌雄では肝には著変を認めず,腎においては近位尿細管上皮に高電子密度のライソゾームが 35 なられた(Photo. 17)。

回復期間終了時の検査において CAZ 及び CET 投与

Photo. 7 Kidney (CET 2.0g/kg, male) Hyaline-like droplets (PAS-positive) in proximal tubular epithelia (PAS, ×400)

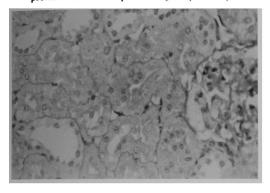


Photo. 8 Spleen (CAZ 5.0g/kg, male) Proliferation of erythroblasts in red pulps (H. E., ×100)

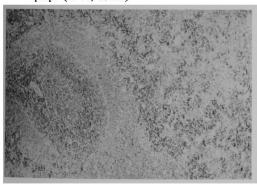


Photo. 9 Bone marrow (CAZ 5.0g/kg, male)
Proliferation of bone marrow (H. E., ×100)

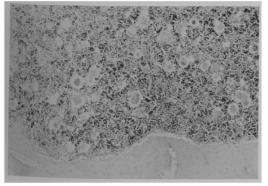


Photo. 10 Skin (treated area) (CAZ 5.0g/kg, male)

Necrosis and excoriation of epidermis, hemorrhage, inflammatory infiltration, edema, degeneration of adnexa and stratum corium (H. E., ×40)

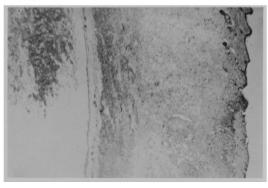


Photo. 11 Skin (treated area) (CET 2.0g/kg, male)

Necrosis, excoriation and thichening of epidermis, hemorrhage, inflammatory infiltration, edema, degeneration of adnexa and stratum corium (H. E., ×40)

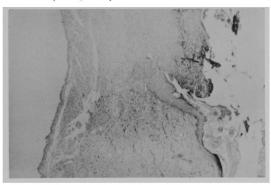


Photo. 12 Kidney (recovery, CAZ 5. 0g/kg, male) Yellow-brown droplets in proximal tubular epithlia (arrows) (H. E., ×400)

群の肝には対照群と異なる変化は 認められなかった (Photo. 18)。しかし CAZ 投与群の腎では近位尿細管上皮に高電子密度のライソゾームの 軽度 な 増加 (雌雄の0.6g/kg 以上)及び電子密度の不均一あるいは粗顆粒状

Photo. 13 Kidney (recovery, CET 2. 0g/kg, male) Yellow-brown droplets in proximal tubular epithelia (arrows) (H. E., ×400)

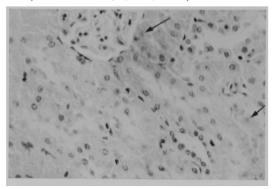


Photo.14 Liver (CAZ 5.0g/kg male) Increase and agglutination of smooth endoplasmic reticulum (×8,640)

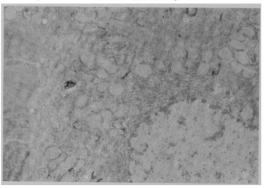
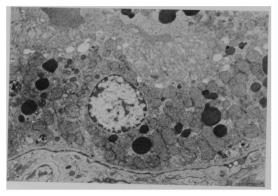



Photo.15 Kidney (CAZ 5.0g/kg, male) Numerous large-sized lysosomes in proximal tubular epithelia (×5, 400)

のライソゾームの増加並びに大型化がみられ(雌雄の 5 g/kg), このうち雌の一部には大型の residual body 様構造も観察された(Photo. 19)。また CET 投与群の腎にも CAZ 投与群と同様の高電子密度及び電子密度の不均一なライソゾームが認められた。

Photo. 16 Kidney (CAZ 5.0g/kg, female) Large-sized lysosomes including irregular dense bodies or myeloid structure in proximal tubular epithelia (×8,640)

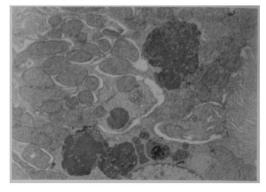


Photo 17 Kidney (CET 2.0g/kg, female) Numerous large-sized lysosomes in proximal tubular epithelia (×5,400)

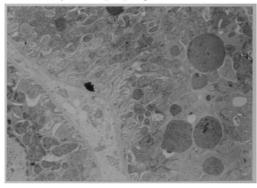


Photo. 18 Liver (recovery, CAZ 5. 0g/kg, male)
No remarkable changes (×5, 400)

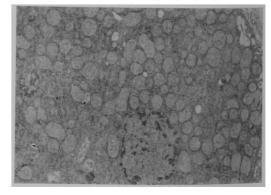
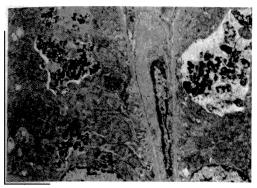



Photo. 19 Kidney (recovery, CAZ 5.0g/kg, female)

Large-sized residual bodies in proximal tubular epithelia (×5, 400)

III. 考察

1. 急性毒性

CAZ の 5 週齢 マウス及びラットにおける静脈内・腹腔内及び皮下投与 LD_{50} 値は 5.8~約 $20\,g/kg$ の範囲であり、また経口投与及び筋肉内投与ではそれぞれ $20\,g/kg$ 以上、 $4\,g/kg$ 以上であった。ラットの静脈内及び皮下投与で対照に用いた CER、CET と比較すると CAZ の LD_{50} 値は CER より大きく CET と同程度ないし若干大きい程度であった。これらの LD_{50} 値を他の cephalosporin 系抗生物質の文献値と比較した場合、CAZ の急性毒性は CER 71 ・cefazolin (CEZ) 81 よりは低く、CET 41 に cefazolin (CEZ) 82 よりは低く、CET 41 に cefotaxime (CTX) 41 , cefmetazole (CMZ) 10 等と同等もしくはやや低いものであった。また CAZ の LD_{50} 値には他の cephalosporins と同様に性差は認められなかった。

一方、CAZの 3 日齢及び 14 日齢マウス及びラットに おける腹腔内並びに皮下投与 LD_{50} 値は 5 週齢動物における値の $1/3\sim1/2$ であり、21 日齢動物での値はこれらの中間に位置することを考慮すれば、CAZ に対する感受性は、 CMZ^{10} ・cefoperazone $(CPZ)^{11}$ と同様に幼若な動物ほど高いといえる。

ウサギに対する CAZ の静脈内投与 LD_{50} 値は 2g/kg 以上であったが、筋肉内投与では約 2g/kg であった。筋肉内投与による直接的な死因は衰弱によるものと思われる。

CAZ の投与により惹起された主な症状は5週齢及び 幼若動物に共通して呼吸異常・自発運動の抑制等であった。また死亡例には疾走・jumping・強直性痙攣も認め られたが、これらの症状が3日齢ラットにおいて明らか ではなかったのは骨格筋及び神経系の発達が未熟なこと によるものであろう。なお亀井ら12)は、3位及び7位に heterocyclic ring を有する cephalosporin は強い痙攣 誘発作用を示すことを報告しているが、3位に pyridine、7位に aminothiazole 環をもつ CAZ でも大量の薬物を 投与した場合には痙攣が誘発された。

2. 亚急性毒性

CAZ は臨床的には静脈内適用の注射剤として使用される予定であるが、静脈内以外の投与経路による安全性を確かめるために皮下投与による亜急性毒性試験を実施したものである。

CAZ $0.06\sim5$ g/kg をラットの皮下に 35 日間連続投与した場合の主な変化は、投与部位の出血及び炎症性変化に起因すると思われる赤血球数の減少等の貧血所見・白血球数の増加・脾重量の増加・骨髄の増生・肝及び脾における髄外造血等 (0.2 g/kg ないしそれ以上の雌雄)であった。さらに全身的には体重増加の抑制 (2 g/kg 以上の雌雄)も認められた。これらの変化は本試験における CET 投与群でも認められており、また CEZ 6)・CTX 13)・CMZ 10)等の皮下投与でも惹起されていることなどから CAZ に特異的な変化ではなかった。

他に血清アルカリ性フォスファター ゼ活性の低下 (0.6g/kg 以上の雌雄) 及び総コレステロールの増加 (0.6g/kg 以上の雌) がみられた。前者については臨床的な意義はないものと思われる。また,後者については CAZ を投与した雌にのみ認められた変化であり,雌における脂質代謝異常を示唆する所見と思われる。しかし 0.6g/kg は推定臨床用量のおよそ 15 倍量に相当し,それを 35 日間連続投与した結果であることを考え併せると,安全上特に問題になるとは考え難い。なお総コレステロールの増加が CER の腹腔内連続投与で雌雄のラットに認められていることが報告されている⁷。

一般に cephalosporins の主な毒性は腎障害性であり、また CAZ は 3 位に pyridine 環を有し化学構造上 CER と類似することより、 CAZ の腎障害性が危惧された。しかし、本試験においては腎重量の増加 (0.2g/kg 以上の雌雄) 及び尿検査における軽微な腎機能障害を示唆する所見 (2g/kg 以上の雌雄) が、CET と同程度に認められたのみであり、CER の連続投与りにより惹起されるような腎機能障害を示唆する所見は得られなかった。したがって CAZ の腎障害性は軽微であり、その程度はCET と同様と思われた。またこれらの成績は CER の腎障害性が、3 位の pyridine 環にのみ依存しているものではないことを示唆している。

一方, CAZ 投与群の近位尿細管上皮に認められた好酸性滴状沈着物 (PAS 染色陰性ないし弱陽性, 0.2g/kg以上の雄) は染色性の違いより硝子滴様沈着物 (PAS 染色陽性, 0.2g/kg以上の雌雄) とは区別できるもので

あった。これらの沈着物は電風的には高電子密度ないし電子密度の不均一なライソゾームとして認められたものであり、CER・CET・cephacetrile (CEC)・gentamicn 及び leupeptin を投与したラットの近位尿細管上皮に認められた heterolysosome¹⁴⁾ と同様に検体を取り込んだライソゾームと思われる。なお類似の沈着物の出現は CEC¹⁶⁾ 及び CTX¹⁸⁾ の皮下連続投与でも認められており、それぞれ H. E. 染色で淡褐色を呈する類円形小類粒、黄色調を呈した不規則な形の eosin 陽性物質として報告されている。

CAZ の投与によるその他の変化としては、盲腸及び肝重量の増加(0.6g/kg 以上の雌雄)が認められた。前者については CET でも惹起されており、抗生物質投与により一般的に認められる変化である。後者については 光顕または電顕的にはクッパー星細胞の腫大及び実質細胞内における滑面小胞体の軽度な増加を伴ったものであったが、その他に肝障害性を示唆する成績は認められなかった。

以上のように CAZ を 35 日間皮下投与することにより種々の変化が認められた。しかしこれらのほとんどは他の cephalosporins でも惹起されることが知られている変化であり、29 日間の回復期間後には消失ないし軽減するものであった。したがってこれらの変化は可逆的なものであり、大量投与群でみられた体重・投与部位の局所症状等の回復性が比較的遅い一部の所見を除き、29日間の回復期間でほぼ正常に復するものと思われる。なお腎近位尿細管上皮における好酸性及び硝子滴様沈着物の消失は比較的遅く、かつ回復期間終了時にはこれらとは光顕的にやや異なる黄褐色沈着物が CAZ 群及び CET群に認められた。この新たに出現した沈着物は電顕的には residual body 様構造を示すライソゾームであり、好酸性または硝子滴様沈着物の移行したものである可能性が考えられる。

以上の結果より、CAZ のラットにおける 35 日間皮 下投与亜急性毒性試験における最大無作用量は 0.06g/ kg と推定された。

(試験実施期間:昭和55年2月~昭和55年11月)

文 南

 O'CALLAGHAN, C. H.; P. ACRED, P. HARPER, D. RYAN, S. KIRBY & S. HARDING: GR 20263, a new broadspectrum cephalosporin with antipseudomal activity, Antimicrob. Agents Chemother. 17:876~883, 1980

- LITCHFILD, J. T. & F. WILCOXON: A simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther. 96:99~ 113, 1949
- 3) 高橋和明, 奥田教隆:新しい毒性試験と安全性の 評価, 154~160 頁, ソフトサイエンス社
- 4) 倉本昌明,石村泰子,森下順子,大久保孝明,季 雌毅: Sodium Cephalothin (CET) 大量投与 による毒性について,第1報 急性毒性,亜急性 毒性。Jpn. J. Antibiot. 27:746~765, 1974
- 5) 林 裕造, 古川 仁, 川野祐次, 吉田 正:静脈 注射による Cephalothin のラットにおける亜急性 毒性試験。 Jpn. J. Antibiot. 23:231~242, 1975
- 6) 伊藤隆太,川村弘徳,梶原三郎,樋田 晋,松浦 慎吾,肥田野富男,宮坂 誠,木村裕則,高橋美 保子,田村 穣: Cefuroxime の安全性に関する 検討,第2報 ラット5週間亜急性毒性と5週間 回復実験。Chemotherapy 27 (S-6):130~151, 1979
- (本昌明,石村泰子,森本順子,李 雄毅,松浦博: Cephaloridine (CER) の実験動物に対する毒性試験・急性, 亜急性ならびに慢性毒性。 Jpn. J. Antibiot. XXIX: 735~760, 1976
- 8) 渡辺信夫,岩波黄葵,藤井登志之: Cefazolin sodium の毒性および胎仔への影響。 Chemotherapy 18:528~542, 1970
- 9) 森岡 浩, 林 昌亮: Cefotaxime の急性ならび に亜急性毒性。 Chemotherapy 28 (S-1): 98~ 108, 1980
- 10) 増田 裕,木村邦男,岡田忠彦,松沼尚史,棚瀬 久雄,真板敬三,阿久沢正夫:CS-1170の安全性 に関する研究(第1報) 各種実験動物による急 性,亜急性ならびに慢性毒性試験。三共年報 30: 112~147, 1978
- 11) 米田豊昭,正谷博之,柴田哲夫,中田弘子,河村 泰仁,佐藤 盛,長沢峰子,滝本陽子,高井 明: Cefoperazone (T-1551) の毒性試験(第1報) マウス,ラットおよびイヌでの急性毒性試験。 Chemotherapy 28 (S-6): 179~188, 1980
- 12) 亀井千晃, 池上信行, 田坂賢二: Cephalosporin 系抗生物質の痙攣誘発効果とその構造活性相関に ついて。日薬理誌 79:9P~10P, 1982
- 13) 森岡 浩, 矢島隆二, 稲津水穂, 小林孝好, 林 昌亮: Cefotaxime のラットにおける皮下投与時 の亜急性毒性。応用薬理 20:1247~1263, 1980
- 14) WATANABE, M.: Drug-induced lysosomal changes and nephrotoxicity in rats. Acta. Path. Jap. 28: 867~889, 1978
- 15) 田中寿子, 飯塚 壮, 今井敬子: Cephacetrileの 毒性に関する研究―ラットおよびマウスにおける 一般毒性試験―。実中研・前臨床 2:1~18, 1976

SAFETY STUDY ON CEFTAZIDIME (I)

ACUTE TOXICITY IN MOUSE, RAT AND RABBIT, AND SUBACTUTE TOXICITY IN RAT BY SUBCUTANEOUS ADMINISTRATION

Joh Tamura, Norio Sato, Hiroshi Ezaki, Harumi Miyamoto Sanae Oda, Kiyomi Hirai and Hiroshi Tokado Tokyo Research Laboratories, Shin Nihon Jitsugyo Co., Ltd.

MICHIO MATSUMOTO and TOSHIKAZU SHIRAI
Department of Pathology, Juntendo University, School of Medicine

Acute and subacute toxicity of ceftazidime (CAZ, SN401), a new cephalosporin antibiotic, was investigated, and the results are summarized as follows:

Acute toxicity

- 1. Intravenous, intraperitoneal and subcutaneous LD_{50} values of CAZ in 5-week-old mice and rats ranged from 5.8 g/kg to about 20 g/kg, and oral and intramuscular LD_{50} values were higher than 20 g/kg and 4 g/kg, respectively. Intravenous and intramuscular LD_{50} values in rabbits were higher than 2 g/kg and about 2 g/kg, respectively.
- 2. Intraperitoneal and subcutaneous LD₅₀ values of CAZ in 3- and 14-day-old rats and 14-day-old mice were $1/3\sim1/2$ of those in 5-week-old animals, indicating higher sensitivity in younger animals to the lethal effect of the antibiotic.

Subacute toxicity

- 1. In the subacute toxicity test in rats by subcutaneous administration of CAZ at doses of 0.06, 0.2, 0.6, 2.0 and 5.0 g/kg/day for 35 days, anemic changes such as decrease in RBC counts, hemoglobin and hematocrit, increase in reticulocyte counts, proliferation of bone marrow and extramedullary hemopoiesis, considered to be due to subcutaneous hemorrhage at the injection sites, were observed. Also, in the groups treated with 0.2 g/kg/day of CAZ or higher, decrease in body weight gain and increase in weights of kidneys, caecum, liver and spleen were noted. Similar changes were noted also in cephalothin-group (2.0 g/kg/day). The nephrotoxicological effect of the drug was considered to be as mild as that of cephalothin.
- 2. Results in 4-week-recovery test after the 35-day administration revealed that these changes induced by CAZ and cephalothin were reversible.
 - 3. The maximum non-toxic dose of CAZ was estimated to be 0.06 g/kg/day.