# 成人における BRL 28500 (Clavulanic acid-Ticarcillin) 及び Ticarcillin 投与時の糞便内細菌叢への影響

本廣 孝·川上 晃·荒卷雅史·田中耕一·古賀達彦 島田 康·冨田尚文·阪田保隆·藤本 保·西山 亨 久田直樹·石本耕治·富永 薫·山下文雄 久留米大学医学部小児科学教室

新しく開発された CVA-K と TIPC を力価比 1:15 で配合した注射用抗生物質 BRL 28500 と対照薬として TIPC を 20 歳から 26 歳の健康男性 12 例中各 6 例に BRL 28500 または TIPC を各々1回投与量 3,200, 3,000 mg, 1日2回(朝,夕), one shot 静注で5日間投与し、各薬剤の糞便内細菌叢に対する影響をみた。また、糞便中の CVA と TIPC 濃度および分離株に対するBRL 28500 に対する BRL 28500 と TIPC の薬剤感受性を測定し、さらに薬剤による副作用及び臨床検査値への影響を検討した。

- 1. BRL 28500 (3, 200 mg × 2) 投与例の糞便内細菌 叢では、Enterobacteriaceae 中 E.coli の平均菌数は投与開始 5 日後及び投与終了 3 日後に投与開始前の検査日より  $2 \sim 3$  段階高い菌数を示し、Klebsiella spp. もほぼ同時期より検出例が多くなったが、Staphylococcus spp. は逆に検出例が少なくなった。これらの変化は、いずれも投与終了 5 または 10 日後には回復した。その他のグラム陰性桿菌、グラム陽性菌および嫌気性菌には影響はみられなかった。TIPC (3,000 mg × 2) 投与例では、Klebsiella spp. および Staphylococcus spp. が BRL 28500 と類似した傾向を示したが、E.coli の菌数は TIPC 投与により影響されず、その他の菌にも影響はみられなかった。
- 2. 糞便中の CVA と TIPC 濃度は、BRL 28500 あるいは TIPC 投与例のすべての測定日で、 検出限界以下であった。
- 3. BRL 28500 あるいは TIPC 投与例からの分離株に対する MIC の比較では、BRL 28500 は TIPC よりも低い値を示し、とくにグラム陰性桿菌に対して諸家の報告と類似したものであった。
- 4. BRL 28500, TIPC 投与例共に副作用の出現はなく、臨床検査値への影響では BRL 28500 投与例で GOT の異常上昇が 2 例にみられた。一方、TIPC ではすべて検査値で異常値を呈した例はなかった。

英国ビーチャム社が開発した  $\beta$ -lactamase 阻害剤である potassium clavulanate (CVA-K)<sup>1)</sup> は Fig.1 に示したような構造式を有し、その化学名は potassium (Z)-(2R, 5R)-3-(2-hydroxyethylidene)-7-oxo-4-oxa-1-azabicyclo [3.2.0]-heptane-2-carboxylate で、それ自身の抗菌作用は非常に弱いことから、単独で臨床に応用することはできないが、種々の細菌が産生する $\beta$ -lactamase と不可逆的に結合し、その酵素活性を不活化することから、本邦では既に CVA-K と amoxicillin (AMPC) の力価比 1:2 からなる経口剤が発売されている。

BRL 28500 は前述の CVA-K と広域抗菌スペクトルを有する penicillin 系の注射剤である ticarcillin (TIPC) を力価比 1:15 で配合した注射用抗生物質製剤で、TIPC の短所である penicillinase 型の  $\beta$ -lacta-

mase に不安定である欠点を補っており、第 33 回日本 化学療法学会総会において新薬シンポジウムにとりあげ られ、その基礎的検討及び成人での臨床評価が論じられ たが<sup>2)</sup>、本剤をヒトに投与した場合の糞便内細菌養に対 する影響を検索した成績はない。

そこで成人に BRL 28500 と対照薬として TIPC を one shot 静注で投与し, 糞便内細菌叢の変動を観察

Fig. 1 Chemical structure of CVA-K

両薬剤投与時における 糞便中の濃度を測定,分離株の BRL 28500 と TIPC に対する薬剤感受性試験を実施す ると共に副作用を検討したので,その成績を報告する。

# I. 検 討 方 法

# 1. 糞便内細菌叢の変動

#### 1) 対象者

20 歳から 26 歳, 平均 22.5 歳, 体重 54~92 kg, 平均 67.9 kg の健康男性 12 例を対象とした。

# 2) 投与方法

対象者 12 例を任意に 6 例ずつ 2 群に わけ、 I 群は BRL 28500 1 回 3,200 mg, II 群に対しては TIPC 1 回 3,000 mg を使用し、両群共に1日2回(朝、夕)、 one shot 静注で延べ 6 日間、実質 5 日間投与した。

# 3) 糞便内細菌数測定日

測定日は両投与群共に投与開始前5日,投与開始日, 投与開始3日後,投与開始5日後(投与終了日),投与終 了3,5,10日後とした。

## 4) 糞便内細菌数測定方法

排便後直ちに撹拌し、その 1g を光岡の培地 [Brain heart infusion broth (Difco) 37.0 g, Resazurin 0.1% alcoholic solution (Wako) 1.0 ml, L-Cystein-HCl·H2O (Wako) 0.5 g, Bact agar (Difco) 1.0 g, Deionized water 1,000 ml] の 9.0 ml に入れ, よく混和後, Dilution buffer A (KH<sub>2</sub>PO<sub>4</sub> special grade (Wako) 4.5 g, Na<sub>2</sub>HPO<sub>4</sub> special grade 6.0 g, L-Cystein-HCl·H<sub>2</sub>O (Wako) 0.5 g, Polysorbate-80 (Katayama) 0.5 g, Resazurin 0.1% alcoholic solution (Wako) 1.0 ml. Bacto agar (Difco), Deionized water 1,000 ml) で 100 倍段階希釈し、その 0.1 ml を 5% 緬羊脱繊維血液 加 Phenylethyl alcohol agar (BBL), DHL agar (Eiken), NAC agar (Eiken), Staphylococcus agar No. 110 (Eiken), 1.5% Bact agar (Difco) 加 SF broth (Eiken), Candida GE agar (Nissui) に塗沫し、30℃, 48 時間好気培養, GAM agar (Nissui), Bacteroides agar (Nissui) にも塗沫し,30℃,48 時間 Gaspak 法 (BBL) で嫌気培養後に種々の 細菌につき菌数の 測定を 行い, 主に minitek (BBL) を用いて菌種の同定を実施 したが、この際、嫌気性菌は Bacteroides spp. までの 同定にとどめた。 なお, Clostridium difficile の 検索 は Allen の方法®に準じて実施した。

# 2. 糞便中薬剤濃度測定

# 1) 対象者

糞便中細菌数の測定と同じ 12 例につき菌数測定と同じ日, すなわち BRL 28500 か TIPC 投与開始前5日,投与開始日,投与開始3日後,投与開始5日後(投与終7日),投与終73,5,10日後の糞便につき各薬剤の濃

度を測定した。

#### 2) 測定方法

#### (1) CVA-K

Klebsiella pneumoniae subsp. pneumoniae ATCC 29665 を検定菌とする Large plate agar well 法で、培地は Nutrient agar (Oxoid) を使用し、標準曲線はTIPC を希釈時に用いた同じ液で CVA-K を希釈し作成すると共に被検体の濃度を測定し、糞便1g中の濃度を算出したが、この際の検出限界は糞便1g中 0.16 mgであった。

## (2) TIPC

Pseudomonas aeruginosa NCTC 10701 を検定菌とする Large plate agar well 法で、培地は Antibiotic medium No.2 (Difco) を使用し、標準曲線は TIPC を 0.1 M クエン酸緩衝液 (pH 6.5) で希釈し作成すると共に被検体の濃度を測定し、糞便 1g 中の TIPC 濃度を算出したが、検出限界は糞便 1g 中 1.56 mg であった。

#### 3. 薬剤感受性試験

分離株中 Candida spp. 及び嫌気性菌については薬剤 感受性は測定せず, その他の菌種では BRL 28500 と TIPC 投与開始前5日, 投与開始日, 投与開始3日後, 投与開始5日後, 投与終了3,5,10日後の各菌種を1株ずつ at randam に選び, 投与開始前, 投与中, 投与終了後の3群に分け, BRL 28500 と TIPC に対する感受性を測定し, MIC の変化を比較した。

## 1) 対象株

BRL 28500 投与例で Enterobacteriaceae の分離株中 Escherichia coli 52 株, K. pneumoniae subsp. pneumoniae 22 株, Klebsiella oxytoca 7 株, Citrobacter freundii 6 株, Enterobacter agglomerans 1 株の計 88 株, その他のグラム陰性桿菌では P. aeruginosa 8 株と Pseudomonas fluorescens, Xanthomonas maltophilia 各 1 株の計 10 株, グラム陽性球菌では Staphylococcus aureus 5 株, coagulase-negative Staphylococci 11 株, Enterococcus faecalis 19 株, Enterococcus faecium 7 株, Micrococcus sp. 4 株の計 46 株, TIPC 投与例では Enterobacteriaceae の分離株中 E. coli 49 株, K. pneumoniae subsp. pneumoniae 19 株, K. oxytoca 1 株, C. freundii 1 株, E. cloacae 3 株, Enterobacter amnigenus 1 株, Hafnia alvei 2 株の計 76 株, その他のグラム陰性桿菌では P. aeruginosa 6 株, グラム陽性

球菌では S. aureus 10 株, coagulase-negative Staphylococci 12 株, E. faecalis 13 株, E. faecium 9 株, 計44 株, 総計 270 株を対象とした。

#### 2) 薬剤感受性測定方法

化学療法学会標準法に従い 寒天平板希釈法で測定 した。 すなわちいずれの菌性も 増菌培地は Mueller-Hinton broth (Difco), 感受性測定培地は Mueller-Hinton agar (Difco) を使用し、各菌種の採種菌量は 10<sup>8</sup> cells/ml のみとし、BRL 28500 と TIPC に対する感受性試験を実施した。

# 3) 副作用及び臨床検査

BRL 28500 及び TIPC 投与の 12 例につき各薬剤の投与開始日から投与終了 10 日後までの副作用の有無を観察すると共に、各薬剤投与開始前と投与終了 3 日後に一般検血〔赤血球数、白血球数、白血球百分率、ヘモグロビン (Hb)、ヘマトクリット (Ht)、血小板数〕、プロトロンビン時間、血清生化学的検査〔総蛋白、A/G 比、総ビリルビン、総コレステロール、GOT、GPT、Al-P、LDH、BUN、Creatinine、血清電解質(Na、K、Cl)〕及び尿検査(pH、蛋白、糖、ウロビリノーゲン、沈渣)を実施し、臨床検査値への影響をチェックした。

#### II. 成 a

- 1. 糞便内細菌叢の変動
- 1) BRL 28500 投与例
- (1) 投与開始前5日

Enterobacteriaceae 中 E.~coli は全例が  $2.7 \times 10^5 \sim 1.0 \times 10^8$  cells/g, 平均  $1.8 \times 10^7$  cells/g で,Klebsiella spp. は 2 例が各々  $1.6 \times 10^4$ ,  $4.0 \times 10^2$  cells/g, Citrobacter spp. も 2 例のみが各々  $1.0 \times 10^8$ ,  $7.0 \times 10^2$  cells/g を示し,Enterobacteriaceae 全体でみると全例が  $2.9 \times 10^5 \sim 1.0 \times 10^8$  cells/g 域にあり,平均  $1.8 \times 10^7$  cells/g で,他のグラム陰性桿菌は Pseudomonas spp. が 2 例に分離され各々  $5.0 \times 10^2$ ,  $9.0 \times 10^2$  cells/g を呈した。

グラム陽性菌中 Staphylococcus spp. は2例のみが各々2.0×10²、3.0×10⁴ cells/g で, Enterococcus spp. は全例が3.0×10⁴~1.1×108 cells/g, 平均2.0×10¹ cells/g, Micrococcus spp. は3例が6.0×10²~2.0×108 cells/g, Candida spp. では2例のみが各々1.0×10²、2.7×10³ cells/g を示した。

嫌気性菌中 Bacteroides spp. は全例から検出され1.0  $\times 10^{10} \sim 1.1 \times 10^{11}$  cells/g, 平均  $4.3 \times 10^{10}$  cells/g で, C. difficile は分離されなかったが, Case 1 の1例のみに Toxin が検出された。

総嫌気性菌数は  $2.0 \times 10^{10} \sim 5.0 \times 10^{11}$  cells/g, 平均  $2.2 \times 10^{11}$  cells/g であった (Tables  $1 \sim 8$ , Fig. 2)。

# (2) 投与開始日

Enterobacteriaceae 中 E.coli は投与開始前5日と同じく全例から分離され、 $1.0\times10^6\sim1.0\times10^8$  cells/g、平均  $3.7\times10^7$  cells/g で、投与開始前5日の平均菌数と同台を示し、Klebsiella spp. と Enterobacter spp. が各1

Table 1 Bacterial flora in feces of healthy volunteers administered BRL28500 (3,200mg×2, i.v.)

-5 days before administration-

|                     |                      |                      |                      |                      | o uu j               | s before admi        |                      |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Case No.            | 1                    | 2                    | 3                    | 4                    | 5                    | 6                    |                      |
| Name                | J.S.                 | Y.T.                 | M.D.                 | T.S.                 | J.A.                 | T.F.                 |                      |
| Age(y.), Sex        | 26, M                | 24, M                | 22 , M               | 21 , M               | 22 , M               | 20, M                | Mean                 |
| Body weight(kg)     | 73.0                 | 92.0                 | 71.0                 | 75.0                 | 72.0                 | 64.0                 | Wican                |
| Daily dose(g)       | 2                    | 2                    | 2                    | 2                    | 2                    | 2                    |                      |
| Duration(days)      | 5                    | 5                    | 5                    | 5                    | 5                    | 5                    |                      |
| E. coli             | 2.7×10 <sup>5</sup>  | 3.3×10 <sup>5</sup>  | 2.0×10 <sup>6</sup>  | 1.0×10 <sup>8</sup>  | 4.0×10 <sup>6</sup>  | 1.0×10 <sup>6</sup>  | 1.8×10 <sup>7</sup>  |
| Klebsiella spp.     | 1.6×10 <sup>4</sup>  | $4.0 \times 10^{2}$  |                      |                      |                      |                      | 2.7×10 <sup>3</sup>  |
| Citrobacter spp.    |                      |                      |                      | $1.0 \times 10^{6}$  |                      | $7.0 \times 10^{2}$  | 1.6×10 <sup>5</sup>  |
| Enterobacter spp.   |                      |                      |                      |                      |                      |                      |                      |
| H. alvei            |                      |                      |                      |                      |                      |                      |                      |
| Enterobacteriaceae  | $2.9 \times 10^{5}$  | 3.3×10 <sup>5</sup>  | 2.0×10 <sup>6</sup>  | 1.0×10 <sup>8</sup>  | 4.0×10 <sup>6</sup>  | 1.0×10 <sup>6</sup>  | 1.8×10 <sup>7</sup>  |
| Pseudomonas spp.    |                      |                      |                      |                      | 5.0×10 <sup>2</sup>  | 9.0×10 <sup>2</sup>  | 2.3×10 <sup>2</sup>  |
| Staphylococcus spp. |                      | $2.0 \times 10^{2}$  |                      |                      | 3.0×10 <sup>4</sup>  |                      | 5.0×10 <sup>3</sup>  |
| Enterococcus spp.   | $1.6 \times 10^6$    | $6.1 \times 10^{6}$  | 3.0×10 <sup>4</sup>  | $1.1 \times 10^{8}$  | $1.0 \times 10^{6}$  | 1.9×10 <sup>5</sup>  | 2.2×10 <sup>7</sup>  |
| Micrococcus spp.    | $2.0 \times 10^{6}$  |                      |                      |                      | $6.0 \times 10^{2}$  | 6.0×10 <sup>4</sup>  | 3.4×10 <sup>5</sup>  |
| Candida spp.        |                      |                      |                      | $1.0 \times 10^{2}$  | $2.7 \times 10^{3}$  |                      | 4.7×10 <sup>2</sup>  |
| Total aerobes       | $3.9 \times 10^{6}$  | 6.4×10 <sup>6</sup>  | 2.0×10 <sup>6</sup>  | 2.1×10 <sup>8</sup>  | 5.0×10 <sup>6</sup>  | 1.2×10 <sup>6</sup>  | 3.8×10 <sup>7</sup>  |
| Bacteroides spp.    | 1.0×10 <sup>10</sup> | 5.0×10 <sup>10</sup> | 6.0×10 <sup>10</sup> | 1.1×10 <sup>11</sup> | 1.0×10 <sup>10</sup> | 2.0×10 <sup>10</sup> | 4.3×10 <sup>10</sup> |
| Total anaerobes     | $2.0 \times 10^{10}$ | 4.3×10 <sup>11</sup> | 6.0×10 <sup>10</sup> | 3.1×10 <sup>11</sup> | 4.0×10 <sup>10</sup> | 5.0×10 <sup>11</sup> | 2.2×10 <sup>11</sup> |

Table 2 Bacterial flora in feces of healthy volunteers administered BRL28500 (3,200mg×2, i.v.)

-just before administration-

| Case No.            | 1                    | 2                    | 3                    | 4                    | 5                    | 6                    |                      |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Name                | J.S.                 | Y.T.                 | M.D.                 | T.S.                 | J.A.                 | T.F.                 |                      |
| Age(y.), Sex        | 26, M                | 24, M                | 22, M                | 21 , M               | 22, M                | 20, M                | Mean                 |
| Body weight(kg)     | 73.0                 | 92.0                 | 71.0                 | 75.0                 | 72.0                 | 64.0                 |                      |
| Daily dose(g)       | 2                    | 2                    | 2                    | 2                    | 2                    | 2                    |                      |
| Duration(days)      | 5                    | 5                    | 5                    | 5                    | 5                    | 5                    |                      |
| E. coli             | 2.8×10 <sup>6</sup>  | 1.0×10 <sup>8</sup>  | 1.0×10 <sup>8</sup>  | 1.2×10 <sup>7</sup>  | $8.0 \times 10^{6}$  | 1.0×10 <sup>6</sup>  | $3.7 \times 10^7$    |
| Klebsiella spp.     |                      |                      |                      |                      |                      | $2.0 \times 10^{2}$  | 3.3×10               |
| Citrobacter spp.    |                      |                      |                      |                      |                      |                      |                      |
| Enterobacter spp.   |                      |                      |                      |                      | $2.2 \times 10^{3}$  |                      | $3.7 \times 10^{2}$  |
| H. alvei            |                      |                      |                      |                      |                      |                      |                      |
| Enterobacteriaceae  | 2.8×10 <sup>6</sup>  | 1.0×10 <sup>8</sup>  | 1.0×10 <sup>8</sup>  | 1.2×10 <sup>7</sup>  | 8.0×10 <sup>6</sup>  | 1.0×10 <sup>6</sup>  | $3.7 \times 10^7$    |
| Pseudomonas spp.    |                      | 9.0×10 <sup>2</sup>  |                      |                      |                      | $4.0 \times 10^{2}$  | 2.2×10 <sup>2</sup>  |
| Staphylococcus spp. |                      |                      | 1.5×10 <sup>3</sup>  | 1.0×10 <sup>4</sup>  | 1.0×10 <sup>4</sup>  | 8.0×10 <sup>4</sup>  | 1.7×10 <sup>4</sup>  |
| Enterococcus spp.   | 2.8×10 <sup>5</sup>  | 1.0×10 <sup>10</sup> | 2.3×10 <sup>7</sup>  | 9.0×10 <sup>8</sup>  |                      | 3.7×10 <sup>5</sup>  | 1.8×10 <sup>9</sup>  |
| Micrococcus spp.    |                      |                      |                      |                      |                      |                      |                      |
| Candida spp         |                      | $1.0 \times 10^{2}$  |                      | $7.0 \times 10^{2}$  | $4.1 \times 10^{3}$  |                      | $8.2 \times 10^{2}$  |
| Total aerobes       | 3.1×10 <sup>6</sup>  | 1.1×10 <sup>10</sup> | 1.2×10 <sup>8</sup>  | 9.1×10 <sup>8</sup>  | 8.0×10 <sup>6</sup>  | 1.4×10 <sup>6</sup>  | 1.8×10 <sup>9</sup>  |
| Bacteroides spp.    | 4.0×10 <sup>10</sup> | 4.0×10 <sup>10</sup> | 3.0×10 <sup>10</sup> | 1.9×10 <sup>11</sup> | 1.2×10 <sup>11</sup> | 1.0×10 <sup>11</sup> | 8.7×10 <sup>10</sup> |
| Total anaerobes     | 6.0×10 <sup>10</sup> | 7.0×10 <sup>10</sup> | 7.0×10 <sup>10</sup> | 1.9×10 <sup>11</sup> | 2.6×10 <sup>11</sup> | 2.3×10 <sup>11</sup> | 1.5×10 <sup>11</sup> |

Table 3 Bacterial flora in feces of healthy volunteers administered BRL28500 (3,200mg×2, i.v.)

-3 days under administration-

| Case No.            | 1                    | 2                    | 3                    | 4                    | 5                    | 6                    |                      |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Name                | J.S.                 | Y.T.                 | M.D.                 | T.S.                 | J.A.                 | T.F.                 |                      |
| Age(y.), Sex        | 26, M                | 24, M                | 22 , M               | 21 , M               | 22 , M               | 20, M                | Mean                 |
| Body weight(kg)     | 73.0                 | 92.0                 | 71.0                 | 75.0                 | 72.0                 | 64.0                 |                      |
| Daily dose(g)       | 2                    | 2                    | 2                    | 2                    | 2                    | 2                    |                      |
| Duration(days)      | 5                    | 5                    | 5                    | 5                    | 5                    | 5                    |                      |
| E. coli             |                      | 4.3×10 <sup>7</sup>  | 1.0×10 <sup>8</sup>  | 1.2×10 <sup>9</sup>  | 1.0×10 <sup>8</sup>  | 7.0×10 <sup>4</sup>  | $2.4 \times 10^{8}$  |
| Klebsiella spp.     | $1.4 \times 10^7$    |                      |                      | 2.0×10 <sup>8</sup>  | 3.4×10 <sup>7</sup>  | 3.3×10 <sup>5</sup>  | $4.1 \times 10^7$    |
| Citrobacter spp.    |                      |                      |                      |                      | 1.0×10 <sup>6</sup>  |                      | $1.7 \times 10^{5}$  |
| Enterobacter spp.   |                      |                      |                      |                      |                      |                      |                      |
| H. alvei            |                      |                      |                      |                      |                      |                      |                      |
| Enterobacteriaceae  | 1.4×10 <sup>7</sup>  | 4.3×10 <sup>7</sup>  | 1.0×10 <sup>8</sup>  | 1.4×10 <sup>9</sup>  | 1.4×10 <sup>8</sup>  | 4.0×10 <sup>5</sup>  | 2.8×10 <sup>8</sup>  |
| Pseudomonas spp.    |                      |                      |                      |                      |                      | 2.0×10 <sup>4</sup>  | 3.3×10 <sup>3</sup>  |
| Staphylococcus spp. |                      |                      | 6.0×10 <sup>4</sup>  | 4.8×10 <sup>3</sup>  | 2.0×10 <sup>6</sup>  | 1.0×10 <sup>2</sup>  | 3.4×10 <sup>5</sup>  |
| Enterococcus spp.   | 1.0×10 <sup>8</sup>  | 2.0×10 <sup>8</sup>  | 6.1×10 <sup>7</sup>  | 1.5×10 <sup>8</sup>  | 5.0×10 <sup>8</sup>  | 1.1×10 <sup>4</sup>  | 1.7×10 <sup>8</sup>  |
| Micrococcus spp.    |                      | 1.0×10 <sup>4</sup>  |                      |                      |                      |                      | $1.7 \times 10^{3}$  |
| Candida spp.        |                      |                      |                      | $8.6 \times 10^{3}$  | 2.6×10 <sup>5</sup>  |                      | 4.5×10 <sup>4</sup>  |
| Total aerobes       | 1.1×10 <sup>8</sup>  | 2.4×10 <sup>8</sup>  | 1.6×10 <sup>8</sup>  | 1.6×10 <sup>9</sup>  | 6.4×10 <sup>8</sup>  | 4.3×10 <sup>5</sup>  | 4.5×10 <sup>8</sup>  |
| Bacteroides spp.    | 1.0×10 <sup>10</sup> | 6.0×10 <sup>10</sup> | 6.0×10 <sup>10</sup> | 6.3×10 <sup>9</sup>  | 1.0×10 <sup>10</sup> | 4.0×10 <sup>9</sup>  | 2.5×10 <sup>10</sup> |
| Total anaerobes     | 1.0×10 <sup>10</sup> | 1.6×10 <sup>11</sup> | 6.0×10 <sup>10</sup> | 3.0×10 <sup>10</sup> | 8.0×10 <sup>10</sup> | 5.0×10 <sup>10</sup> | 6.5×10 <sup>10</sup> |

Table 4 Bacterial flora in feces of healthy volunteers administered BRL28500 (3,200mg×2, i.v.)

-5 days under administration-

| Case No.            | 1                    | 2                    | 3                    | 4                    | 5                    | 6                    |                      |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Name                | J.S.                 | Y.T.                 | M.D.                 | T.S.                 | J.A.                 | T.F.                 | 1                    |
| Age(y.), Sex        | 26, M                | 24, M                | 22, M                | 21, M                | 22, M                | 20, M                | Mean                 |
| Body weight(kg)     | 73.0                 | 92.0                 | 71.0                 | 75.0                 | 72.0                 | 64.0                 | Mean                 |
| Daily dose(g)       | 2                    | 2                    | 2                    | 2                    | 2                    | 2                    |                      |
| Duration(days)      | 5                    | 5                    | 5                    | 5                    | 5                    | 5                    |                      |
| E. coli             |                      | 1.9×10 <sup>9</sup>  | 8.1×10 <sup>10</sup> | 1.3×10 <sup>9</sup>  | 2.5×10 <sup>7</sup>  |                      | 1.4×10 <sup>10</sup> |
| Klebsiella spp.     | 1.0×10 <sup>8</sup>  | $5.1 \times 10^{2}$  | $2.0 \times 10^{2}$  | $5.7 \times 10^7$    | 3.0×10 <sup>6</sup>  | 1.0×10 <sup>6</sup>  | 2.7×10 <sup>7</sup>  |
| Citrobacter spp.    |                      |                      |                      |                      |                      |                      |                      |
| Enterobacter spp.   |                      |                      |                      |                      |                      |                      |                      |
| H. alvei            |                      |                      |                      |                      |                      |                      |                      |
| Enterobacteriaceae  | 1.0×10 <sup>8</sup>  | 1.9×10 <sup>9</sup>  | 8.1×10 <sup>10</sup> | 1.4×10 <sup>9</sup>  | 2.8×10 <sup>7</sup>  | 1.0×10 <sup>6</sup>  | 1.4×10 <sup>10</sup> |
| Pseudomonas spp.    | 1.0×10 <sup>2</sup>  |                      |                      |                      | 5.2×10 <sup>3</sup>  |                      | 8.8×10 <sup>2</sup>  |
| Staphylococcus spp. |                      |                      |                      |                      |                      |                      |                      |
| Enterococcus spp.   | 2.0×10 <sup>9</sup>  | 1.1×10 <sup>9</sup>  | 1.0×10 <sup>10</sup> | 1.0×10 <sup>9</sup>  | 2.0×10 <sup>8</sup>  |                      | 2.1×109              |
| Micrococcus spp.    |                      |                      |                      |                      |                      |                      |                      |
| Candida spp.        |                      | $1.0 \times 10^{2}$  | 3.0×10 <sup>2</sup>  | $2.4 \times 10^{3}$  | 1.2×10 <sup>5</sup>  | 2.6×10 <sup>3</sup>  | 2.1×104              |
| Total aerobes       | 3.0×10 <sup>8</sup>  | 3.0×10 <sup>9</sup>  | 9.1×10 <sup>10</sup> | 2.4×10 <sup>9</sup>  | 2.3×10 <sup>8</sup>  | 1.0×10 <sup>6</sup>  | 1.6×10 <sup>10</sup> |
| Bacteroides spp.    | 4.3×10 <sup>9</sup>  | 8.0×10 <sup>10</sup> | 2.2×10 <sup>11</sup> | 4.0×10 <sup>10</sup> | 4.0×10 <sup>10</sup> | 2.5×10 <sup>6</sup>  | 6.4×10 <sup>10</sup> |
| Total anaerobes     | 8.0×10 <sup>10</sup> | 2.3×10 <sup>11</sup> | $7.1 \times 10^{11}$ | 1.0×10 <sup>11</sup> | 4.0×10 <sup>10</sup> | 1.0×10 <sup>10</sup> | 2.0×10 <sup>11</sup> |

# Table 5 Bacterial flora in feces of healthy volunteers administered BRL28500 (3,200mg×2, i.v.)

-3 days after administration-

| Case No.            | 1                    | 2                    | 3                    | 4                    | 5                    | 6                    | -                    |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Name                | J.S.                 | Y.T.                 | M.D.                 | T.S.                 | J.A.                 | T.F.                 |                      |
| Age(y.), Sex        | 26, M                | 24, M                | 22 , M               | 21, M                | 22, M                | 20, M                | Mean                 |
| Body weight(kg)     | 73.0                 | 92.0                 | 71.0                 | 75.0                 | 72.0                 | 64.0                 | 2/2001               |
| Daily dose(g)       | 2                    | 2                    | 2                    | 2                    | 2                    | 2                    |                      |
| Duration(days)      | 5                    | 5                    | 5                    | 5                    | 5                    | 5                    |                      |
| E. coli             | 2.0×10 <sup>6</sup>  | 2.0×10 <sup>6</sup>  | 3.3×10 <sup>7</sup>  | 2.0×10 <sup>10</sup> | $8.0 \times 10^{8}$  | 1.8×10 <sup>5</sup>  | 3.5×10 <sup>9</sup>  |
| Klebsiella spp.     | 1.0×10 <sup>8</sup>  | 1.0×10 <sup>8</sup>  | 5.0×10 <sup>4</sup>  | 1.0×10 <sup>10</sup> |                      | 8.2×10 <sup>6</sup>  | 1.7×109              |
| Citrobacter spp.    |                      | $9.0 \times 10^{2}$  |                      |                      |                      |                      | 1.5×10 <sup>2</sup>  |
| Enterobacter spp.   |                      |                      |                      |                      |                      |                      |                      |
| H. alvei            |                      |                      |                      |                      |                      |                      |                      |
| Enterobacteriaceae  | 1.0×10 <sup>8</sup>  | 1.0×10 <sup>8</sup>  | 3.3×10 <sup>7</sup>  | 3.0×10 <sup>10</sup> | 8.0×10 <sup>8</sup>  | 8.4×10 <sup>6</sup>  | 5.2×10 <sup>9</sup>  |
| Pseudomonas spp.    | 1.0×10 <sup>8</sup>  |                      | 1.0×10 <sup>4</sup>  |                      |                      | 3.0×10 <sup>4</sup>  | 1.7×10 <sup>7</sup>  |
| Staphylococcus spp. |                      |                      |                      | 1.0×10 <sup>4</sup>  |                      | 1.0×10 <sup>2</sup>  | 1.7×10 <sup>3</sup>  |
| Enterococcus spp.   | 4.0×10 <sup>8</sup>  | 1.1×10 <sup>9</sup>  | $3.9 \times 10^7$    | 2.2×109              | 4.1×10 <sup>5</sup>  | $9.2 \times 10^{3}$  | 6.2×108              |
| Micrococcus spp.    |                      |                      |                      |                      |                      |                      |                      |
| Candida spp.        |                      | $1.0 \times 10^{2}$  |                      | 1.0×10 <sup>4</sup>  | 1.1×10 <sup>5</sup>  | 6.0×10 <sup>4</sup>  | 3.0×10 <sup>4</sup>  |
| Total aerobes       | 6.0×10 <sup>8</sup>  | 1.2×10 <sup>9</sup>  | 7.2×10 <sup>7</sup>  | 3.2×10 <sup>10</sup> | 8.0×10 <sup>8</sup>  | 8.5×10 <sup>6</sup>  | 5.8×10 <sup>9</sup>  |
| Bacteroides spp.    | 2.0×10 <sup>10</sup> | 4.0×10 <sup>8</sup>  | 8.0×10 <sup>10</sup> | 2.3×10 <sup>11</sup> | 3.9×10 <sup>11</sup> | 4.2×10 <sup>11</sup> | 1.9×10 <sup>11</sup> |
| Total anaerobes     | 1.7×10 <sup>11</sup> | $3.1 \times 10^{11}$ | 3.3×10 <sup>11</sup> | 2.6×10 <sup>11</sup> | 5.6×10 <sup>11</sup> | 9.7×10 <sup>11</sup> | 4.3×10 <sup>11</sup> |

Table 6 Bacterial flora in feces of healthy volunteers administered BRL28500 (3,200mg×2, i.v.)

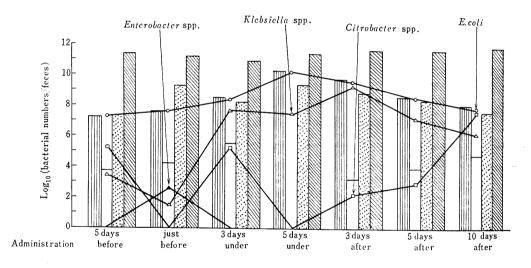
-5 days after administration -

| Case No.            | 1                    | 2                    | 3                    | 4                    | 5                    | 6                    |                      |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Name                | J.S.                 | Y.T.                 | M.D.                 | T.S.                 | J.A.                 | T.F.                 |                      |
| Age(y.), Sex        | 26, M                | 24, M                | 22 , M               | 21, M                | 22 , M               | 20, M                | Mean                 |
| Body weight(kg)     | 73.0                 | 92.0                 | 71.0                 | 75.0                 | 72.0                 | 64.0                 | 1,200,1              |
| Daily dose(g)       | 2                    | 2                    | 2                    | 2                    | 2                    | 2                    |                      |
| Duration(days)      | 5                    | 5                    | 5                    | 5                    | 5                    | 5                    |                      |
| E. coli             | 1.0×10 <sup>8</sup>  | 3.0×10 <sup>8</sup>  | 1.0×10 <sup>8</sup>  | 1.6×10 <sup>9</sup>  | 2.0×10 <sup>8</sup>  | 3.2×10 <sup>5</sup>  | 3.8×10 <sup>8</sup>  |
| Klebsiella spp.     | $1.0 \times 10^{6}$  |                      |                      | 7.0×10 <sup>7</sup>  |                      | 1.0×10 <sup>4</sup>  | 1.2×10 <sup>7</sup>  |
| Citrobacter spp.    |                      | $4.1 \times 10^{3}$  |                      |                      |                      | $9.5 \times 10^{2}$  | $8.4 \times 10^{2}$  |
| Enterobacter spp.   |                      |                      |                      |                      |                      |                      |                      |
| H. alvei            |                      |                      |                      |                      |                      |                      |                      |
| Enterobacteriaceae  | 1.0×10 <sup>8</sup>  | 3.0×10 <sup>8</sup>  | 1.0×10 <sup>8</sup>  | 1.7×10 <sup>9</sup>  | 2.0×10 <sup>8</sup>  | 3.3×10 <sup>5</sup>  | 3.9×10 <sup>8</sup>  |
| Pseudomonas spp.    |                      |                      |                      |                      |                      | 1.0×10 <sup>2</sup>  | 1.7×10               |
| Staphylococcus spp. |                      |                      |                      |                      |                      | 5.0×10 <sup>4</sup>  | 8.3×10 <sup>3</sup>  |
| Enterococcus spp.   | $2.0 \times 10^{8}$  | 3.1×10 <sup>7</sup>  | 1.9×10 <sup>7</sup>  | 9.1×10 <sup>8</sup>  | 3.5×10 <sup>4</sup>  | $8.9 \times 10^{3}$  | 1.9×10 <sup>8</sup>  |
| Micrococcus spp.    |                      |                      |                      |                      |                      |                      |                      |
| Candida spp.        |                      | 1.0×10 <sup>2</sup>  |                      | $1.3 \times 10^{3}$  | 3.0×10 <sup>4</sup>  | $8.0 \times 10^{2}$  | $5.4 \times 10^{3}$  |
| Total aerobes       | 3.0×10 <sup>8</sup>  | 3.3×10 <sup>8</sup>  | 1.2×10 <sup>8</sup>  | 2.6×10 <sup>9</sup>  | 2.0×10 <sup>8</sup>  | 3.9×10 <sup>5</sup>  | 5.8×10 <sup>8</sup>  |
| Bacteroides spp.    | 1.9×10 <sup>11</sup> | 5.0×10 <sup>5</sup>  | 2.9×10 <sup>11</sup> | 2.1×10 <sup>11</sup> | 7.0×10 <sup>10</sup> | 6.0×10 <sup>10</sup> | 1.4×10 <sup>11</sup> |
| Total anaerobes     | $8.0 \times 10^{11}$ | 1.3×10 <sup>11</sup> | 4.9×10 <sup>11</sup> | 2.2×10 <sup>11</sup> | 3.0×10 <sup>11</sup> | 1.0×10 <sup>11</sup> | $3.4 \times 10^{11}$ |

Table 7 Bacterial flora in feces of healthy volunteers administered BRL28500 (3,200mg×2,i.v.)

-10 days after administration-

|                     |                      |                      |                      |                      |                      | ays arter aur        | illiisti ation—      |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Case No.            | 1                    | 2                    | 3                    | 4                    | 5                    | 6                    |                      |
| Name                | J.S.                 | Y.T.                 | M.D.                 | T.S.                 | J.A.                 | T.F.                 |                      |
| Age(y.), Sex        | 26, M                | 24, M                | 22, M                | 21 , M               | 22 , M               | 20 , M               | Mean                 |
| Body weight(kg)     | 73.0                 | 92.0                 | 71.0                 | 75.0                 | 72.0                 | 64.0                 | Mean                 |
| Daily dose(g)       | 2                    | 2                    | 2                    | 2                    | 2                    | 2                    |                      |
| Duration(days)      | 5                    | 5                    | 5                    | 5                    | 5                    | 5                    |                      |
| E. coli             | 2.5×10 <sup>8</sup>  | 1.0×10 <sup>7</sup>  | 2.0×10 <sup>6</sup>  | 2.4×10 <sup>8</sup>  | 1.0×10 <sup>8</sup>  |                      | 6.3×10 <sup>7</sup>  |
| Klebsiella spp.     |                      | 5.6×10 <sup>6</sup>  |                      | 2.0×10 <sup>6</sup>  |                      | 4.9×10 <sup>5</sup>  | 1.3×10 <sup>6</sup>  |
| Citrobacter spp.    | 2.3×10 <sup>8</sup>  | 1                    |                      |                      |                      |                      | 3.8×10 <sup>7</sup>  |
| Enterobacter spp.   |                      |                      |                      |                      |                      |                      |                      |
| H. alvei            | 1                    |                      |                      |                      |                      |                      |                      |
| Enterobacteriaceae  | 2.6×10 <sup>8</sup>  | 1.6×10 <sup>7</sup>  | 2.0×10 <sup>6</sup>  | 2.4×10 <sup>8</sup>  | 1.0×10 <sup>8</sup>  | 4.9×10 <sup>5</sup>  | 1.0×10 <sup>8</sup>  |
| Pseudomonas spp.    |                      |                      |                      |                      |                      |                      |                      |
| Staphylococcus spp. | 1.2×10³              | 2.8×10 <sup>5</sup>  |                      |                      | 6.0×10 <sup>4</sup>  | 1.2×10 <sup>4</sup>  | 5.9×10 <sup>4</sup>  |
| Enterococcus spp.   | $2.0 \times 10^{6}$  | 2.0×10 <sup>6</sup>  | 6.3×10 <sup>5</sup>  | 2.0×10 <sup>8</sup>  | 3.0×10 <sup>4</sup>  | 1.3×10 <sup>4</sup>  | $3.4 \times 10^{7}$  |
| Micrococcus spp.    |                      |                      |                      |                      |                      |                      |                      |
| Candida spp.        |                      |                      | 2.0×10 <sup>2</sup>  | $2.5 \times 10^{3}$  | 1.0×10 <sup>5</sup>  |                      | 1.7×10 <sup>4</sup>  |
| Total aerobes       | 2.6×10 <sup>8</sup>  | 1.8×10 <sup>7</sup>  | 2.6×10 <sup>6</sup>  | 4.4×10 <sup>8</sup>  | 1.0×10 <sup>8</sup>  | 5.2×10 <sup>5</sup>  | 1.3×10 <sup>8</sup>  |
| Bacteroides spp.    | 7.0×10 <sup>11</sup> | 1.1×10 <sup>9</sup>  | 2.0×10 <sup>10</sup> | 2.0×10 <sup>11</sup> | 3.0×10 <sup>10</sup> | 1.4×10 <sup>11</sup> | 1.8×10 <sup>11</sup> |
| Total anaerobes     | 7.0×10 <sup>11</sup> | 1.7×10 <sup>12</sup> | 3.0×10 <sup>10</sup> | 3.0×10 <sup>11</sup> | 1.7×10 <sup>11</sup> | 4.8×10 <sup>11</sup> | 5.6×10 <sup>11</sup> |


6

|   |             | BKL28500         | (3,200mg ×     | (Z,1.V.)        |                 |                 |                 |                  |
|---|-------------|------------------|----------------|-----------------|-----------------|-----------------|-----------------|------------------|
| • | Case<br>No. | 5 days<br>before | Just<br>before | 3 days<br>under | 5 days<br>under | 3 days<br>after | 5 days<br>after | 10 days<br>after |
|   | 1           | +                | +              | +               | -               | _               | _               | _                |
|   | 2           |                  | +              | +               | -               | _               | _               | _                |
|   | 3           | _                | _              | _               | _               | _               | _               | _                |
|   | 4           | _                | _              | _               | _               | _               | _               | _                |
|   | 5           | _                | _              | _               | _               | _               | -               | _                |

Table 8 Toxin production of *C. difficile* in feces of healthy volunteers administered BRL28500 (3,200mg×2,i.v.)

Fig. 2 Bacterial flora in feces of healthy volunteers administered BRL 28500 (3, 200 mg × 2, i. v.)





例のみ に 検出され、各々  $2.0\times10^2$ ,  $2.2\times10^3$  cells/g, Enterobacteriaceae 全体でみると全例が  $1.0\times10^6\sim1.0\times10^8$  cells/g 域にあり、平均  $3.7\times10^7$  cells/g で、投与開始前 5 日の平均菌数と同台を呈し、その他のグラム陰性桿菌は Pseudomonas spp. が 2 例に分離され、各々  $9.0\times10^2$ ,  $4.0\times10^2$  cells/g であった。

グラム陰性菌中 Staphylococcus spp. は投与開始前5日より検出例は多く4例で、 $1.5 \times 10^3 \sim 8.0 \times 10^4$  cells/g、平均 $1.7 \times 10^4$  cells/g、Enterococcus spp. は1例で分離されず、他5例は $2.8 \times 10^5 \sim 1.0 \times 10^{10}$  cells/g、平均 $1.8 \times 10^9$  cells/g で、投与開始前5日の平均菌数より2段階高い菌数を示した。Micrococcus spp. は全例から検出されず、Candida spp. は3例が $1.0 \times 10^2 \sim 4.1 \times 10^3$  cells/

#### g であった。

嫌気性菌中 Bacteroides spp. は全例が  $3.0 \times 10^{10} \sim 1.9 \times 10^{11}$  cells/g, 平均  $8.7 \times 10^{10}$  cells/g を呈し、投与開始前 5 日の平均菌数と同台で、C. difficile は分離されなかったが、Toxin が投与開始前 5 日と同じ Case 1 と新たに Case 2 の 2 例に認められた。総嫌気性菌数は全例が  $6.0 \times 10^{10} \sim 2.6 \times 10^{11}$  cells/g で、投与開始日と類似か同台の菌数、 $1.5 \times 10^{11}$  cells/g で、投与開始前 5 日の平均菌数と同台であった(Tables 2.8,Fig. 2)。

#### (3) 投与開始3日後

Enterobacteriaceae 中 E. coli は投与開始日に比べ2 例が2段階高い菌数、2例が類似か同台の菌数、1例が 2段階低い菌数で、1例からは検されなかったが、平均 では  $2.4 \times 10^8$  cells/g を示し、投与開始日の平均菌数に類似した。Klebsiella spp. は投与開始日より検出例は多く4例で、投与開始前5日と比較しても同様で  $3.3 \times 10^5 \sim 2.0 \times 10^8$  cells/g,平均  $4.1 \times 10^7$  cells/g を呈し、Citrobacter spp. が1例に分離され  $1.0 \times 10^6$  cells/g であった。また、投与開始日及び投与開始前5日に検出されたEnterobacter spp. は全例から分離されなかった。Enterobacteriaceae 全体でみると全例が  $4.0 \times 10^5 \sim 1.4 \times 10^9$  cells/g 域にあり、投与開始日より2例が2段階高い菌数、4例が類似か同台の菌数を示し、平均では  $2.8 \times 10^8$  cells/g で、投与開始日の平均菌数に類似した。その他のグラム陰性桿菌は投与開始日に検出された P seudomonas spp. の2例中1例のみが  $2.0 \times 10^4$  cells/g を呈し、投与開始日及び投与開始前5日の菌数に比べ2段階高かった。

グラム陽性菌中 Staphylococcus spp. は投与開始日と同じ4例から分離され、投与開始日に比較し1例が2段階高い菌数、2例が類似の菌数、1例が2段階低い菌数を示し、平均では3.4×10<sup>5</sup> cells/g で投与開始日の平均菌数に類似した。Enterococcus spp. は投与開始日の平均 出されなかった1例を加えた全例から分離され、投与開始日より2例が3段階以上高い菌数、3例が類似か同台の菌数、1例が2段階低い菌数を呈し、平均は1.7×10<sup>8</sup> cells/g で、投与開始日の平均菌数に類似した。Micrococcus spp. は1例のみから1.0×10<sup>4</sup> cells/g 分離され、Candida spp. は投与開始日に検出された3例中の1例からは分離されず、他2例は投与開始日に比べ2段階高い菌数か類似の菌数を示した。

嫌気性菌中 Bacteroides spp. は全例が  $4.0 \times 10^{10} \sim 6.0 \times 10^{10}$  cells/g 域にあり、投与開始日に比較し、 4 例は類似か同台の菌数で、 2 例は 2 段階低い菌数を呈し、平均  $2.5 \times 10^{10}$  cells/g で、投与開始日の 平均菌数と同台で、 C. difficille は検出されなかったが、投与開始日と同じ 2 例で Toxin が認められた。総嫌気性菌数は全例が  $1.0 \times 10^{10} \sim 1.6 \times 10^{11}$  cells/g で、いずれの 例も 投与開始日と 類似か同台の菌数を示し、平均  $6.5 \times 10^{10}$  cells/g で、投与開始日の平均菌数に類似した(Tables 3.8, Fig. 2)。

# (4) 投与開始5日後(投与終了日)

Enterobacteriaceae 中 E.coli は 2 例から検出されず、他の 4 例中 2 例は投与開始日に比較し 2 段階高い菌数、2 例は類似の菌数を呈し、平均  $1.4 \times 10^{10}$  cells/g で、投与開始日の平均菌数より 3 段階高く、Klebsiella spp. は投与開始前 5 日、投与開始日そして投与開始 3 日後よりも分離例は多く、全例が  $2.0 \times 10^2 \sim 1.0 \times 10^8$  cells/g 域、平均  $2.7 \times 10^7$  cells/g で、投与開始日と投与開始前 5 日に検出された Citrobacter spp. と Enterobacter spp. は分

離されなかった。Enterobacteriaceae 全体でみると全例が  $1.0 \times 10^6 \sim 8.1 \times 10^{10}$  cells/g 域にあり,投与開始日に比べ 3 例が 2 段階高い菌数, 3 例が類似か同台の菌数を示し,平均では  $1.4 \times 10^{10}$  cells/g で,投与開始日の平均菌数に比較し 3 段階高い菌数を呈した。その他のグラム陰性桿菌は Pseudomonas spp. が投与開始日とは異なった 2 例から各々  $1.0 \times 10^2$ ,  $5.2 \times 10^3$  cells/g 検出された。

グラム陽性菌中 Staphylococcus spp. は全例, Enterococcus spp. では1例から分離されず, 検出された Enterococcus spp. の5例中3例は投与開始日より3段階以上高い菌数. 2例は類似の菌数を示し、平均 $2.1\times10^9$  cells/g で、投与開始日の平均菌数と同台であった。Micrococcus spp. は全例から分離されず、Candida spp. は投与開始日より検出例が多く5例で、投与開始5日、投与開始3日後と比べて同様で $1.0\times10^2\sim1.2\times10^5$  cells/g、平均 $2.1\times10^4$  cells/g であった。

嫌気性菌中 Bacteroides spp. は全例が  $2.5 \times 10^6 \sim 2.2 \times 10^{11}$  cells/g 域にあり,投与開始日に比較し5 例が類似か同台の菌数,1 例が5 段階低い菌数を呈し,平均  $6.4 \times 10^{10}$  cells/g で,投与開始日の 平均菌数と 同台 で,C.di ficile は分離されず,Toxin も全例に検出できなかった。総嫌気性菌数は全例が  $1.0 \times 10^{10} \sim 7.1 \times 10^{11}$  cells/g で,いずれの例も投与開始日と 類似か 同台の 菌数を示し,平均  $2.0 \times 10^{11}$  cells/g で,投与開始日の平均菌数と同台であった(Tables 4.8,Fig. 2)。

#### (5) 投与終了3日後

Enterobacteriaceae 中 E. coli は全例が 1.8×105~ 2.0×10<sup>10</sup> cells/g 域にあり、投与開始日より2例が2段 階以上高い菌数, 3 例が類似か同台の菌数, 1 例が 2 段 階低い菌数を呈し、平均 3.5×10° cells/g で、投与開始 日の平均菌数に比べ2段階高く, Klebsiella spp. は投与 開始5日後より分離例は1例少なかったが、投与開始日 および投与開始前5日に比較し多く,5例が5.0×10<sup>4</sup>~ 1.0×1010 cells/g, 平均 1.7×109 cells/g, Citrobacter spp. は1例のみが9.0×10<sup>2</sup> cells/g を示し, Enterobacter spp. は検出されなかった。Enterobacteriaceae 全体でみると 全例が 8.4×106~3.0×1010 cells/g 域にあり、投与開始 日より3例が2段階以上高い菌数、3例が類似の菌数を 呈し、平均 5.2×10° cells/g で、投与開始日の平均菌数 に比べ2段階高かった。 そ の 他のグラム陰性桿菌で は Pseudomonas spp. が投与開始日に分離された2例中1 例と他2例が 1.0×10<sup>4</sup>~1.0×10<sup>8</sup> cells/g を示した。

グラム陽性菌中 Staphylococcus spp. は投与開始日に検出された 4 例中 2 例に分離され、各々  $1.0 \times 10^4$ ,  $1.0 \times 10^2$  cells/g で、投与開始日に比較し前者は同じ菌数、後者は 2 段階低い菌数で、Enterococcus spp. は全例が

 $9.2 \times 10^3 \sim 2.2 \times 10^9$  cells/g を呈し、投与開始日より 2 例 が 3 段階以上高い菌数、 3 例が類似か同台の菌数、 1 例 が 2 段階低い菌数、平均  $6.2 \times 10^8$  cells/g で、投与開始日の平均菌数に類似した。*Micrococcus* spp. は検出されず、*Candida* spp. は投与開始日より 1 例多く 4 例から分離され  $1.0 \times 10^2 \sim 1.1 \times 10^5$  cells/g、平均  $3.0 \times 10^4$  cells/g であった。

嫌気性菌中 Bacteroides spp. は全例が  $4.0 \times 10^8 \sim 4.2 \times 10^{11}$  cells/g 域にあり、投与開始日に比べると 5 例が同台の菌数、 1 例が 2 段階低い菌数、 平均では  $1.9 \times 10^{11}$  cells/g で、投与開始日の平均菌数に類似し、投与開始 5 日後と同じく全例から C. difficile と Toxin は検出されず、総嫌気性菌数は全例が  $1.7 \times 10^{11} \sim 9.7 \times 10^{11}$  cells/g で、いずれも投与開始日と類似か同台の菌数を示し、 平均  $4.3 \times 10^{11}$  cells/g で、投与開始日の平均菌数と同台であった(Tables 5.8、Fig. 2)。

#### (6) 投与終了5日後

Enterobacteriaceae 中 E. coli は全例が 3.2×105~ 1.6×10<sup>9</sup> cells/g 域にあり、 投与開始日に 比較 し 3 例が 2段階高い菌数, 3例が類似か同台の菌数, 平均 3.8× 108 cells/g で、投与開始日の平均菌数に類似した。Klebsiella spp. は投与開始日に分離された1例と他2例が 1.0×10<sup>4</sup>~7.0×10<sup>7</sup> cells/g を呈し, 前者の1例は投与開 始日より2段階高い菌数で、投与開始日に検出されなか った Citrobacter spp. が 2 例に分離され、 各々 4.1× 103, 9.5×102 cells/g で, Enterobacter spp. は検出され なかった。Enterobacteriaceae 全体でみると全例が 3.3 ×10<sup>5</sup>~1.7×10<sup>9</sup> cells/g 域にあり、投与開始日より3例 が2段階高い菌数、3例が類似か同台の菌数を示し、平 均 3.9×108 cells/g で, 投与開始日の平均菌数に類似し た。その他のグラム陰性桿菌では投与開始日に分離され た Pseudomonas spp. の2例中1例のみが投与開始日 と同台の 1.0×10<sup>2</sup> cells/g を呈した。

グラム陽性菌中 Staphylococcus spp. は投与開始日に検出された 4 例中 1 例のみから分離され、投与開始日と同台の  $5.0 \times 10^4$  cells/g で、Enterococcus spp. は全例が  $8.9 \times 10^3 \sim 9.1 \times 10^8$  cells/g を呈し、2 例が投与開始日に比べ3 段階以上高い菌数、2 例が同台の菌数、2 例が2 段階以上低い菌数を示し、平均  $1.9 \times 10^8$  cells/g で、投与開始日の平均菌数に類似した。Micrococcus spp. は全例から分離されず、Candida spp. は投与開始日に検出された3 例と他 1 例が  $1.0 \times 10^2 \sim 3.0 \times 10^4$  cells/g で、前者の3 例は投与開始日と類似か同台の菌数で、平均  $5.4 \times 10^3$  cells/g であった。

嫌気性菌中 Bacteroides spp. は全例が  $5.0 \times 10^5 \sim 2.9$   $\times 10^{11}$  cells/g 域にあり、投与開始日と比較すると 5 例が

類似か同台の菌数、1例が5段階低い菌数、平均1.4×10<sup>11</sup> cells/g で、投与開始日の平均菌数に類似し、投与開始5日後及び投与終了3日後と同じく、全例からC. difficile と Toxin は 検出されず、総嫌気性菌数は全例が1.0×10<sup>11</sup>~8.0×10<sup>11</sup> cells/g で、いずれも投与開始日と類似か同台の菌数を呈し、平均3.4×10<sup>11</sup> cells/g で、投与開始日の平均菌数と同台であった(Tables 6,8, Fig. 2)。

## (7) 投与終了 10 日後

Enterobacteriaceae 中 E. coli は 1 例から分離されず、他 5 例は  $2.0 \times 10^6 \sim 2.5 \times 10^8$  cells/g で、この 5 例は投 与開始日より 1 例 が 2 段階高い 菌数、 3 例が類似の菌数、1 例が 2 段階低い菌数を示し、平均  $6.3 \times 10^7$  cells/g で、投与開始日の 平均菌数と同台であった。Klebsiella spp. は投与開始日に検出された 1 例と他 2 例が  $4.9 \times 10^5 \sim 5.6 \times 10^6$  cells/g で、前者の 1 例は投与開始日に比べ3 段階高く、Citrobacter spp. は 1 例のみが  $2.3 \times 10^6$  cells/g を呈し、Enterobacter spp. は 1 例のみが  $2.3 \times 10^6$  cells/g を呈し、Enterobacter spp. は分離されなかった。Enterobacteriaceae 全体でみると全例が  $4.9 \times 10^5 \sim 2.6 \times 10^6$  cells/g 域にあり、投与開始日と比較すると 2 例が 2 段階高い菌数、3 例が類似の菌数、1 例が 2 段階低い菌数を示し、平均  $1.0 \times 10^6$  cells/g で、投与開始日の平均速数と類似、その他のグラム陰性桿菌株は全例から検出されなかった。

グラム陰性菌中 Staphylococcus spp. は投与開始日に分離された4例中2例と他2例が $1.2 \times 10^3 \sim 2.8 \times 10^5$  cells/g で、前者の2例は投与開始日と同台の萬数を呈し、平均 $5.9 \times 10^4$  cells/g で、投与開始日の平均菌数と同台であった。Enterococcus spp. は全例が $1.3 \times 10^4 \sim 2.0 \times 10^5$  cells/g を示し、投与開始日に検出されなかった1例以外の5例中3例は類似か同台の菌数、2例は2段階以上低い菌数を示し、平均 $3.4 \times 10^7$  cells/g で、投与開始日の平均菌数より2段階低い菌数で、Micrococcus spp. は全例から分離されず、Candida spp. は投与開始日に分離された3例中2例と他1例が $2.0 \times 10^5$  cells/g で、前者の2例は投与開始日に比べ1例が2段階高い菌数、1例が類似の菌数であった。

嫌気性菌中 Bacteroides spp. は全例が  $1.1 \times 10^{9} \sim 7.0 \times 10^{11}$  cells/g 域にあり、いずれも投与開始日と類似か同台の菌数で、平均  $1.8 \times 10^{11}$  cells/g を示し、投与開始日の平均菌数に類似した。投与開始 5 日後と同じく全例から C. difficile と Toxin は検出されず、総嫌 気 性 菌数 は 全 例 が  $3.0 \times 10^{10} \sim 1.7 \times 10^{12}$  cells/g で、投与開始日と比較すると 1 例が 2 段階高い菌数、 5 例が 類似か 同台の 菌数を呈し、平均  $5.6 \times 10^{11}$  cells/g で、投与開始日の 平均菌数 と同台 であった

Tables 7, 8, Fig. 2)o

# 2) TIPC 投与例

# (1) 投与開始前5日

Enterobacteriaceae 中 E. coli は 1 例から分離されず、§5 例は  $5.0 \times 10^6 \sim 9.0 \times 10^8$  cells/g, 平均  $1.8 \times 10^8$  ells/g で、Klebsiella spp., Citrobacter <math>spp. 及び Enrobacter spp. は各 1 例のみがそれぞれ  $1.1 \times 10^7$ ,  $5.0 \times 10^3$ ,  $4.0 \times 10^8$  cells/g を示し、Enterobacteriaceae 全 \*\*でみると 6 例は  $5.0 \times 10^6 \sim 9.0 \times 10^8$  cells/g 域にあり、下均  $1.8 \times 10^8$  cells/g で、その他のグラム陰性桿菌は検出されなかった。

グラム陰性菌中 Staphylococcus spp. は2例から分離 shず、他4例は $4.0 \times 10^2 \sim 1.0 \times 10^8$  cells/g, 平均 $1.7 \times 10^7$  cells/g, Enterococcus spp. は全例が $8.3 \times 10^4 \sim .0 \times 10^{10}$  cells/g 域にあり、平均 $2.0 \times 10^9$  cells/g 域にあり、平均 $2.0 \times 10^9$  cells/g を呈した。 嫌気性菌中 Bacteroides spp. は全例が $3.9 \times 10^9 \sim 1.2 \times 10^{11}$  cells/g, 平均 $2.8 \times 10^{19}$  cells/g で、C.difficile は 気出されなかったが、Case 6 の1例のみに Toxin が認 かられた。 総嫌気性菌数は全例が $3.0 \times 10^{10} \sim 4.1 \times 10^{11}$  cells/g 域にあり、平均 $1.5 \times 10^{11}$  cells/g であった Tables 9, 16、Fig. 3)。

#### (2) 投与開始日

Enterobacteriaceae 中 E. coli は投与開始前5日に テ離されなかった1例と他5例が5.5×10<sup>5</sup>~1.5×10<sup>9</sup> cells/g で、後者の 5 例中 4 例が投与開始前 5 日と類似か同台の菌数、1 例が 2 段階低い菌数を示し、平均  $2.6 \times 10^6$  cells/g で、投与開始前 5 日の平均菌数と同台であった。Klebsiella spp. は投与開始前 5 日に検出された 1 例とは異なった 1 例のみが  $8.0 \times 10^4$  cells/g で、Citrobacter spp. と Enterobacter spp. は全例から分離されなかった。Enterobacteriaceae 全体でみると全例が  $5.5 \times 10^5 \sim 1.5 \times 10^6$  cells/g 域にあり、投与開始前 5 日と比べると4 例が類似か同台の菌数、2 例が 2 段階低い菌数、平均は  $2.6 \times 10^6$  cells/g で、投与開始前 5 日の平均菌数と同台で、その他のグラム陰性桿菌は検出されなかった。

グラム陽性菌中 Staphylococcus spp. は投与開始前5日に分離された4例中3例が $2.0\times10^2\sim1.0\times10^8$  cells/g で、この3例を投与開始前5日と比較すると2段階高い菌数、同台の菌数、6段階低い菌数を呈した例が各1例で、Enterococcus spp. は全例が $3.0\times10^5\sim2.0\times10^8$  cells/g 域にあり投与開始前5日より1例が2段階高い菌数、3例が類似か同台の菌数、2例が2段階以上低い菌数を示し、平均 $5.4\times10^7$  cells/g で、投与開始前5日の平均菌数より2段階低かった。Candida spp. は投与開始前5日に検出された1例と他の1例が各々 $5.0\times10^4$ 、 $1.0\times10^4$  cells/g で、前者は投与開始前5日の菌数と同台であった。

嫌気性菌 Bacteroides spp. は全例が 1.0×10<sup>10</sup>~1.0×10<sup>11</sup> cells/g で, 投与開始前 5 日に比べ1 例が 2 段階高い

Table 9 Bacterial flora in feces of healthy volunteers administered TIPC (3,000mg × 2, i.v.)

—5 days before administration—

| Case No.            | 1                    | 2                    | 3                    | 4                    | 5                    | 6                    |                     |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|
| Name                | M.R.                 | K.T.                 | S.M.                 | H.T                  | T.H.                 | K.M.                 |                     |
| Age(y.), Sex        | 25,M                 | 24, M                | 23, M                | 21, M                | 21, M                | 21, M                | Mean                |
| Body weight(kg)     | 75.0                 | 54.0                 | 58.0                 | 63.0                 | 58.0                 | 60.0                 | 1.10411             |
| Daily dose(g)       | 2                    | 2                    | 2                    | 2                    | 2                    | 2                    |                     |
| Duration(days)      | 5                    | 5                    | 5                    | 5                    | 5                    | 5                    |                     |
| E. coli             |                      | 9.0×10 <sup>8</sup>  | 5.0×10 <sup>6</sup>  | 1.3×10 <sup>7</sup>  | 6.4×10 <sup>6</sup>  | 1.6×10 <sup>8</sup>  | 1.8×10 <sup>8</sup> |
| Klebsiella spp.     | 1.1×10 <sup>7</sup>  |                      |                      |                      |                      |                      | 1.8×10 <sup>6</sup> |
| Citrobacter spp.    |                      |                      |                      | $5.0 \times 10^{3}$  |                      |                      | $8.3 \times 10^{2}$ |
| Enterobacter spp.   |                      |                      |                      |                      | $4.0 \times 10^{3}$  |                      | $6.7 \times 10^{2}$ |
| H. alvei            |                      |                      |                      |                      |                      |                      |                     |
| Enterobacteriaceae  | 1.1×10 <sup>7</sup>  | 9.0×10 <sup>8</sup>  | 5.0×10 <sup>6</sup>  | 1.3×10 <sup>7</sup>  | 6.4×10 <sup>6</sup>  | 1.6×10 <sup>8</sup>  | 1.8×10 <sup>8</sup> |
| Pseudomonas spp.    |                      |                      |                      |                      |                      |                      |                     |
| Staphylococcus spp. | 4.0×10 <sup>2</sup>  | 1.0×10 <sup>6</sup>  |                      |                      | 2.1×10 <sup>4</sup>  | 1.0×10 <sup>8</sup>  | 1.7×10 <sup>7</sup> |
| Enterococcus spp.   | $1.6 \times 10^{9}$  | 1.0×10 <sup>10</sup> | 9.0×10 <sup>4</sup>  | 8.3×10 <sup>4</sup>  | $7.0 \times 10^{5}$  | 1.0×10 <sup>8</sup>  | 2.0×10 <sup>9</sup> |
| Micrococcus spp.    |                      |                      |                      |                      |                      |                      |                     |
| Candida spp.        |                      |                      |                      |                      |                      | $3.0 \times 10^4$    | $5.0 \times 10^{3}$ |
| Total aerobes       | 1.6×10 <sup>9</sup>  | 1.1×10 <sup>10</sup> | 5.1×10 <sup>6</sup>  | 1.3×10 <sup>7</sup>  | 7.1×10 <sup>6</sup>  | 3.6×10 <sup>8</sup>  | 2.2×10 <sup>9</sup> |
| Bacteroides spp.    | 2.0×10 <sup>10</sup> | 1.0×10 <sup>10</sup> | 5.1×10 <sup>9</sup>  | 1.2×10 <sup>11</sup> | 3.9×10 <sup>9</sup>  | 1.0×10 <sup>10</sup> | 2.8×10 <sup>1</sup> |
| Total anaerobes     | 1.6×10 <sup>11</sup> | $7.0 \times 10^{10}$ | 3.0×10 <sup>10</sup> | $4.1 \times 10^{11}$ | 1.2×10 <sup>11</sup> | 1.3×10 <sup>11</sup> | 1.5×10 <sup>1</sup> |

Table 10 Bacterial flora in feces of healthy volunteers administered TIPC  $(3,000 \text{mg} \times 2,\text{i.v.})$ —just before administration—

| Case No.            | 1                    | 2                    | 3                    | 4                    | 5                    | 6                    |                      |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Name                | M.R.                 | K.T.                 | S.M.                 | H.T.                 | T.H.                 | K.M.                 |                      |
| Age(y.), Sex        | 25, M                | 24, M                | .23, M               | 21, M                | 21, M                | 21, M                | Mean                 |
| Body weight(kg)     | 75.0                 | 54.0                 | 58.0                 | 63.0                 | 58.0                 | 60.0                 | Mican                |
| Daily dose(g)       | 2                    | 2                    | 2                    | 2                    | 2                    | 2                    |                      |
| Duration(days)      | 5                    | 5                    | 5                    | 5                    | 5                    | 5                    |                      |
| E. coli             | 5.5×10 <sup>5</sup>  | 3.0×10 <sup>6</sup>  | 3.5×10 <sup>7</sup>  | 2.0×10 <sup>6</sup>  | 1.1×10 <sup>6</sup>  | 1.5×10 <sup>9</sup>  | 2.6×10 <sup>8</sup>  |
| Klebsiella spp.     |                      |                      |                      | 8.0×10 <sup>4</sup>  |                      |                      | 1.3×10 <sup>4</sup>  |
| Citrobacter spp.    |                      |                      |                      |                      |                      |                      |                      |
| Enterobacter spp.   |                      |                      | İ                    |                      |                      |                      |                      |
| H. alvei            |                      |                      |                      |                      |                      |                      |                      |
| Enterobacteriaceae  | 5.5×10 <sup>5</sup>  | 3.0×10 <sup>6</sup>  | 3.5×10 <sup>7</sup>  | 2.1×10 <sup>6</sup>  | 1.1×10 <sup>6</sup>  | 1.5×10 <sup>9</sup>  | 2.6×10 <sup>8</sup>  |
| Pseudomonas spp.    |                      |                      |                      |                      |                      |                      |                      |
| Staphylococcus spp. |                      | 1.0×10 <sup>8</sup>  |                      |                      | 3.0×10 <sup>4</sup>  | 2.0×10 <sup>2</sup>  | 1.7×10 <sup>7</sup>  |
| Enterococcus spp.   | 3.3×10 <sup>5</sup>  | 1.1×10 <sup>8</sup>  | 2.0×10 <sup>6</sup>  | 3.0×10 <sup>5</sup>  | 9.0×10 <sup>6</sup>  | 2.0×10 <sup>8</sup>  | 5.4×10 <sup>7</sup>  |
| Micrococcus spp.    |                      |                      |                      |                      |                      |                      |                      |
| Candida spp.        |                      |                      | 1.0×10 <sup>4</sup>  |                      |                      | 5.0×10 <sup>4</sup>  | 1.0×10 <sup>4</sup>  |
| Total aerobes       | 8.8×10 <sup>5</sup>  | 2.1×10 <sup>8</sup>  | 3.7×10 <sup>7</sup>  | 2.4×10 <sup>6</sup>  | 1.0×10 <sup>7</sup>  | 1.7×10 <sup>9</sup>  | 3.2×10 <sup>7</sup>  |
| Bacteroides spp.    | 2.0×10 <sup>10</sup> | 1.0×10 <sup>10</sup> | 5.0×10 <sup>10</sup> | 1.0×10 <sup>10</sup> | 1.0×10 <sup>11</sup> | 4.0×10 <sup>10</sup> | 3.8×10 <sup>10</sup> |
| Total anaerobes     | 2.0×10 <sup>10</sup> | 3.0×10 <sup>10</sup> | $1.7 \times 10^{11}$ | 6.0×10 <sup>11</sup> | 1.0×10 <sup>11</sup> | 6.0×10 <sup>10</sup> | 1.6×10 <sup>11</sup> |

Table 11 Bacterial flora in feces of healthy volunteers administered TIPC  $(3,000 mg \times 2,i.v.)$ 

-3 days under administration-

|                     |                      |                      |                      |                      | -3 da                | ys under adn         | imistration-         |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Case No.            | 1                    | 2                    | 3                    | 4                    | 5                    | 6                    |                      |
| Name                | M.R.                 | K.T.                 | S.M.                 | H.T.                 | T.H.                 | K.M.                 |                      |
| Age(y.), Sex        | 25, M                | 24, M                | 23 , M               | 21, M                | 21, M                | 21, M                | Mean                 |
| Body weight(kg)     | 75.0                 | 54.0                 | 58.0                 | 63.0                 | 58.0                 | 60.0                 | Mean                 |
| Daily dose(g)       | 2                    | 2                    | 2                    | 2                    | 2                    | 2                    |                      |
| Duration(days)      | 5                    | 5                    | 5                    | 5                    | 5                    | 5                    |                      |
| E. coli             | 2.0×10 <sup>8</sup>  | 2.0×10 <sup>8</sup>  | 1.0×10 <sup>10</sup> | 1.3×10 <sup>7</sup>  | 2.0×10 <sup>10</sup> |                      | 5.1×10 <sup>9</sup>  |
| Klebsiella spp.     | 1.2×10 <sup>9</sup>  | 5.0×10 <sup>6</sup>  |                      | 1.0×10 <sup>6</sup>  |                      | 4.2×10 <sup>8</sup>  | 2.7×10 <sup>8</sup>  |
| Citrobacter spp.    |                      |                      |                      |                      |                      |                      |                      |
| Enterobacter spp.   |                      |                      |                      |                      |                      |                      |                      |
| H. alvei            |                      |                      |                      |                      |                      |                      |                      |
| Enterobacteriaceae  | 1.4×10 <sup>9</sup>  | 2.1×10 <sup>8</sup>  | 1.0×10 <sup>10</sup> | 1.4×10 <sup>7</sup>  | 2.0×10 <sup>10</sup> | 4.2×10 <sup>8</sup>  | 5.4×10 <sup>9</sup>  |
| Pseudomonas spp.    |                      |                      | 6.4×10 <sup>3</sup>  |                      |                      |                      | 1.1×10³              |
| Staphylococcus spp. | 1.0×10 <sup>4</sup>  |                      |                      |                      | 3.6×10 <sup>3</sup>  |                      | 2.3×10 <sup>3</sup>  |
| Enterococcus spp.   | $7.0 \times 10^{2}$  | $7.5 \times 10^7$    | 1.0×10 <sup>6</sup>  | 1.5×10 <sup>6</sup>  | 1.0×10 <sup>8</sup>  | 6.0×10 <sup>6</sup>  | 3.1×10 <sup>7</sup>  |
| Micrococcus spp.    |                      |                      |                      |                      |                      | 0.00                 | 0.2                  |
| Candida spp.        | 1.0×10 <sup>4</sup>  | 6.1×10 <sup>3</sup>  |                      | 5.0×10 <sup>3</sup>  | 1.0×10 <sup>2</sup>  | 5.0×10 <sup>4</sup>  | 1.2×104              |
| Total aerobes       | 1.4×109              | 2.8×10 <sup>8</sup>  | 1.0×10 <sup>10</sup> | 1.6×10 <sup>7</sup>  | 2.0×10 <sup>10</sup> | 4.3×10 <sup>8</sup>  | 5.3×10 <sup>9</sup>  |
| Bacteroides spp.    | 2.1×10 <sup>11</sup> | 6.8×10 <sup>11</sup> | 7.0×10 <sup>9</sup>  | 1.0×10 <sup>10</sup> | 8.5×10 <sup>11</sup> | 8.0×10 <sup>10</sup> | 3.1×10 <sup>11</sup> |
| Total anaerobes     | 4.2×10 <sup>11</sup> | 6.8×10 <sup>11</sup> | 1.3×10 <sup>11</sup> | 1.0×10 <sup>10</sup> | 1.5×10 <sup>12</sup> | 8.0×10 <sup>10</sup> | 4.7×10 <sup>11</sup> |

Table 12 Bacterial flora in feces of healthy volunteers administered TIPC (3,000mg  $\times$  2, i.v.)

-5 days under administration-

| Case No.            | 1                    | 2                    | 3                    | 4                    | 5                    | 6                    |                      |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Name                | M.R.                 | K.T.                 | S.M.                 | H.T.                 | T.H.                 | K.M.                 |                      |
| Age(y.), Sex        | 25, M                | 24, M                | 23,M                 | 21, M                | 21, M                | 21,M                 | Mean                 |
| Body weight(kg)     | 75.0                 | 54.0                 | 58.0                 | 63.0                 | 58.0                 | 60.0                 | Mican                |
| Daily dose(g)       | 2                    | 2                    | 2                    | 2                    | 2                    | 2                    |                      |
| Duration(days)      | 5                    | 5                    | 5                    | 5                    | 5                    | 5                    |                      |
| E. coli             | 4.0×10 <sup>8</sup>  | 1.0×10 <sup>10</sup> | 1.0×10 <sup>8</sup>  | 2.3×10 <sup>7</sup>  | 3.2×10 <sup>5</sup>  | $2.4 \times 10^{8}$  | 1.8×10 <sup>9</sup>  |
| Klebsiella spp.     | 2.5×10 <sup>7</sup>  | 2.0×10 <sup>8</sup>  |                      |                      | 2.5×10 <sup>5</sup>  |                      | 3.8×10 <sup>7</sup>  |
| Citrobacter spp.    |                      |                      |                      |                      |                      |                      |                      |
| Enterobacter spp.   |                      |                      |                      |                      |                      |                      |                      |
| H. alvei            |                      |                      |                      |                      |                      |                      |                      |
| Enterobacteriaceae  | 4.3×10 <sup>8</sup>  | 1.0×10 <sup>10</sup> | 1.0×10 <sup>8</sup>  | 2.3×10 <sup>7</sup>  | 5.7×10 <sup>5</sup>  | 2.4×10 <sup>8</sup>  | 1.8×10°              |
| Pseudomonas spp.    |                      | 2.0×10 <sup>4</sup>  | 2.0×10 <sup>4</sup>  |                      |                      |                      | 6.7×10 <sup>3</sup>  |
| Staphylococcus spp. | 1.0×10 <sup>2</sup>  |                      | 1.0×10 <sup>4</sup>  |                      | 1.0×10 <sup>4</sup>  |                      | 3.3×10 <sup>3</sup>  |
| Enterococcus spp.   | $1.0 \times 10^{2}$  | 4.5×10 <sup>7</sup>  | 3.0×10 <sup>6</sup>  | 5.1×10 <sup>6</sup>  | 6.0×10 <sup>8</sup>  | 3.5×10 <sup>6</sup>  | 1.1×10 <sup>8</sup>  |
| Micrococcus spp.    |                      |                      |                      |                      |                      |                      |                      |
| Candida spp.        | $1.0 \times 10^{3}$  | $3.4 \times 10^{3}$  | 1.0×10 <sup>4</sup>  |                      |                      | 3.6×10 <sup>5</sup>  | 6.2×10 <sup>4</sup>  |
| Total aerobes       | 4.3×10 <sup>8</sup>  | 1.0×10 <sup>10</sup> | 1.0×10 <sup>8</sup>  | 2.8×10 <sup>7</sup>  | 6.0×10 <sup>8</sup>  | 2.4×10 <sup>8</sup>  | 6.2×10 <sup>4</sup>  |
| Bacteroides spp.    | 2.0×10 <sup>10</sup> | 1.5×10 <sup>11</sup> | 1.1×10 <sup>11</sup> | 1.6×10 <sup>11</sup> | 3.0×10 <sup>10</sup> | 7.0×10 <sup>10</sup> | 9.0×10 <sup>10</sup> |
| Total anaerobes     | 2.0×10 <sup>10</sup> | 1.5×10 <sup>11</sup> | 2.0×10 <sup>11</sup> | 1.8×10 <sup>11</sup> | 8.0×10 <sup>10</sup> | 7.0×10 <sup>10</sup> | 1.2×10 <sup>11</sup> |

Table 13 Bacterial flora in feces of healthy volunteers administered TIPC (3,000mg × 2, i.v.)

-3 days after administration-

| Case No.            | 1                    | 2                    | 3                    | 4                    | 5                    | 6                    |                      |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Name                | M.R.                 | K.T.                 | S.M.                 | H.T.                 | T.H.                 | K.M.                 |                      |
| Age(y.), Sex        | 25 , M               | 24,M                 | 23,M                 | 21, M                | 21,M                 | 21, M                | Mean                 |
| Body weight(kg)     | 75.0                 | 54.0                 | 58.0                 | 63.0                 | 58.0                 | 60.0                 | Mean                 |
| Daily dose(g)       | 2                    | 2                    | 2                    | 2                    | 2                    | 2                    |                      |
| Duration(days)      | 5                    | 5                    | 5                    | 5                    | 5                    | 5                    |                      |
| E. coli             | 5.0×10 <sup>6</sup>  | 1.9×10 <sup>8</sup>  | 1.2×10 <sup>7</sup>  |                      | 1.7×10 <sup>5</sup>  | 8.8×10 <sup>8</sup>  | 1.7×10 <sup>8</sup>  |
| Klebsiella spp.     |                      | 6.0×10 <sup>6</sup>  | 6.0×10 <sup>4</sup>  | 1.0×10 <sup>6</sup>  | 1.0×10 <sup>6</sup>  | 2.4×10 <sup>9</sup>  | 4.0×10 <sup>8</sup>  |
| Citrobacter spp.    |                      |                      |                      |                      |                      | $8.0 \times 10^{8}$  | 1.3×10 <sup>8</sup>  |
| Enterobacter spp.   |                      |                      |                      | 1.0×10 <sup>4</sup>  |                      |                      | $1.7 \times 10^{3}$  |
| H. alvei            |                      |                      |                      |                      |                      |                      |                      |
| Enterobacteriaceae  | 5.0 ×10 <sup>6</sup> | 2.0 ×10 <sup>8</sup> | 1.2 ×10 <sup>7</sup> | 1.0 ×10 <sup>6</sup> | 1.2 ×10 <sup>6</sup> | 4.0 ×10 <sup>9</sup> | 7.0 ×10 <sup>8</sup> |
| Pseudomonas spp.    |                      |                      |                      |                      |                      |                      |                      |
| Staphylococcus spp. |                      |                      |                      |                      | 2.0×10 <sup>4</sup>  |                      | 3.3×10 <sup>3</sup>  |
| Enterococcus spp.   | 1.7×10 <sup>6</sup>  | 2.3×10 <sup>8</sup>  | 5.3×10 <sup>6</sup>  | 8.2×10 <sup>6</sup>  | 1.0×10 <sup>9</sup>  | 3.9×10 <sup>9</sup>  | 8.6×10 <sup>8</sup>  |
| Micrococcus spp.    |                      |                      |                      |                      |                      |                      |                      |
| Candida spp.        |                      | 1.0×10 <sup>4</sup>  | $2.3 \times 10^{3}$  |                      |                      | 1.2×10 <sup>5</sup>  | 2.2×10 <sup>4</sup>  |
| Total aerobes       | 6.7×10 <sup>6</sup>  | 4.3×10 <sup>8</sup>  | 1.7×10 <sup>7</sup>  | 9.2×10 <sup>6</sup>  | 1.0×10 <sup>9</sup>  | 7.9×10 <sup>9</sup>  | 1.6×10 <sup>9</sup>  |
| Bacteroides spp.    | 3.0×10 <sup>11</sup> | 5.0×10 <sup>10</sup> | 1.8×10 <sup>11</sup> | 1.0×10 <sup>10</sup> | 2.3×10 <sup>11</sup> | 9.5×10 <sup>11</sup> | 2.8×10 <sup>11</sup> |
| Total anaerobes     | 3.7×10 <sup>11</sup> | 9.0×10 <sup>10</sup> | 4.2×10 <sup>11</sup> | 3.4×10 <sup>11</sup> | 7.5×10 <sup>11</sup> | 1.3×10 <sup>12</sup> | 5.5×10 <sup>11</sup> |

Table 14 Bacterial flora in feces of healthy volunteers administered TIPC (3,000mg×2, i.v.)

-5 days after administration-

| Case No.            | 1                    | 2                    | 3                    | 4                    | 5                    | 6                    |                      |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Name                | M.R.                 | K.T.                 | S.M.                 | H.T.                 | T.H.                 | K.M.                 | 1                    |
| Age(y.), Sex        | 25, M                | 24, M                | 23,M                 | 21, <b>M</b>         | 21, M                | 21, M                | Mean                 |
| Body weight(kg)     | 75.0                 | 54.0                 | 58.0                 | 63.0                 | 58.0                 | 60.0                 | Mican                |
| Daily dose(g)       | 2                    | 2                    | 2                    | 2                    | 2                    | 2                    |                      |
| Duration(days)      | 5                    | 5                    | 5                    | 5                    | 5                    | 5                    |                      |
| E. coli             | 4.4×10 <sup>7</sup>  | $7.0 \times 10^{8}$  | 4.8×10 <sup>5</sup>  |                      | 4.1×10 <sup>6</sup>  | 1.0×10 <sup>9</sup>  | 2.9×10 <sup>8</sup>  |
| Klebsiella spp.     |                      |                      |                      |                      | 8.0×10 <sup>4</sup>  | 5.0×10 <sup>8</sup>  | 8.3×10 <sup>7</sup>  |
| Citrobacter spp.    |                      |                      |                      | 1.5×10 <sup>7</sup>  |                      |                      | 2.5×10 <sup>6</sup>  |
| Enterobacter spp.   | $5.0 \times 10^6$    |                      |                      |                      |                      |                      | 8.3×10 <sup>5</sup>  |
| H. alvei            |                      |                      |                      |                      |                      | 1.0×10 <sup>6</sup>  | 1.7×10 <sup>5</sup>  |
| Enterobacteriaceae  | 4.9×10 <sup>7</sup>  | 7.0×10 <sup>8</sup>  | 4.8×10 <sup>5</sup>  | 1.5×10 <sup>7</sup>  | 4.2×10 <sup>6</sup>  | 1.5×10 <sup>9</sup>  | 3.8×10 <sup>8</sup>  |
| Pseudomonas spp.    |                      |                      |                      |                      |                      |                      |                      |
| Staphylococcus spp. | 8.0×10 <sup>4</sup>  | 2.0×10 <sup>8</sup>  |                      | 2.0×10 <sup>4</sup>  |                      | 1.0×10 <sup>4</sup>  | 3.3×10 <sup>7</sup>  |
| Enterococcus spp.   | 2.9×10 <sup>5</sup>  | 2.1×10 <sup>8</sup>  | 2.0×10 <sup>5</sup>  | 1.7×10 <sup>5</sup>  | 6.0×10 <sup>7</sup>  | 8.0×10 <sup>8</sup>  | 1.8×10 <sup>8</sup>  |
| Micrococcus spp.    |                      |                      |                      |                      |                      |                      |                      |
| Candida spp.        |                      | 9.0×10⁴              |                      |                      |                      | 7.0×10 <sup>4</sup>  | 2.7×10 <sup>4</sup>  |
| Total aerobes       | 4.9×10 <sup>7</sup>  | 1.1×10 <sup>9</sup>  | 2.5×10 <sup>6</sup>  | 1.5×10 <sup>7</sup>  | 6.4×10 <sup>7</sup>  | 2.3×10 <sup>9</sup>  | 5.9×10 <sup>8</sup>  |
| Bacteroides spp.    | 9.0×10 <sup>10</sup> | 2.3×10 <sup>11</sup> | 5.0×10 <sup>10</sup> | 2.0×10 <sup>10</sup> | 3.0×10 <sup>10</sup> | 1.4×10 <sup>11</sup> | 9.3×10 <sup>10</sup> |
| Total anaerobes     | 1.6×10 <sup>11</sup> | 2.3×10 <sup>11</sup> | 1.0×10 <sup>11</sup> | 9.0×10 <sup>11</sup> | 1.2×10 <sup>11</sup> | 1.4×10 <sup>11</sup> | 2.8×10 <sup>11</sup> |

Table 15 Bacterial flora in feces of healthy volunteers administered TIPC (3,000mg×2, i.v.)

-10 days after administration-

| Case No.            | 1                    | 2                    | 3                    | 4                    | 5                    | 6                    |                      |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Name                | M.R.                 | K.T.                 | S.M.                 | H.T.                 | T.H.                 | K.M.                 |                      |
| Age(y.), Sex        | 25 , M               | 24, M                | 23, M                | 21, M                | 21,M                 | 21, M                | Mean                 |
| Body weight(kg)     | 75.0                 | 54.0                 | 58.0                 | 63.0                 | 58.0                 | 60.0                 | 1110011              |
| Daily dose(g)       | 2                    | 2                    | 2                    | 2                    | 2                    | 2                    |                      |
| Duration(days)      | 5                    | 5                    | 5                    | 5                    | 5                    | 5                    |                      |
| E. coli             | 1.1×10 <sup>8</sup>  | $3.0 \times 10^{8}$  | 6.0×10 <sup>8</sup>  | $2.0 \times 10^{6}$  | $9.0 \times 10^{6}$  | 8.0×10 <sup>8</sup>  | 3.0×10 <sup>8</sup>  |
| Klebsiella spp.     | $2.1 \times 10^7$    | 2.0×10 <sup>4</sup>  | $1.0 \times 10^{6}$  | $1.0 \times 10^{4}$  |                      |                      | 3.7×10 <sup>6</sup>  |
| Citrobacter spp.    |                      |                      |                      |                      |                      | 1.0×10 <sup>6</sup>  | 1.7×10 <sup>5</sup>  |
| Enterobacter spp.   | $2.0 \times 10^{6}$  |                      |                      |                      |                      |                      | 3.3×10 <sup>5</sup>  |
| H. alvei            |                      |                      |                      |                      |                      | $3.3 \times 10^7$    | 5.5×10 <sup>6</sup>  |
| Enterobacteriaceae  | 1.3×10 <sup>8</sup>  | 3.0×10 <sup>8</sup>  | 6.0×10 <sup>8</sup>  | 2.0×10 <sup>6</sup>  | 9.0×10 <sup>6</sup>  | 8.3×10 <sup>8</sup>  | 3.1×10 <sup>8</sup>  |
| Pseudomonas spp.    | 6.0×10 <sup>2</sup>  | 2.0×10 <sup>2</sup>  | 9.3×10 <sup>3</sup>  |                      |                      |                      | 1.7×10 <sup>3</sup>  |
| Staphylococcus spp. | 3.0×10 <sup>6</sup>  |                      |                      | 2.0×10 <sup>4</sup>  |                      | 1.3×10 <sup>3</sup>  | 5.0×10 <sup>5</sup>  |
| Enteroceccus spp.   | $1.4 \times 10^{6}$  | 1.3×10 <sup>9</sup>  | $4.0 \times 10^{6}$  | 1.2×10 <sup>5</sup>  | 1.8×10 <sup>6</sup>  | $6.0 \times 10^{8}$  | 3.2×10 <sup>8</sup>  |
| Micrococcus spp     |                      |                      |                      |                      |                      |                      |                      |
| Candida spp.        | 1.4×10 <sup>3</sup>  | 1.0×10 <sup>4</sup>  | $8.2 \times 10^{3}$  |                      |                      | 5.0×10 <sup>4</sup>  | 1.2×10 <sup>4</sup>  |
| Total aerobes       | 1.4×10 <sup>8</sup>  | 1.6×10 <sup>9</sup>  | 6.0×10 <sup>8</sup>  | 2.1×10 <sup>6</sup>  | 1.1×10 <sup>7</sup>  | 1.4×10 <sup>9</sup>  | 6.3×10 <sup>8</sup>  |
| Bacteroides spp.    | 1.0×10 <sup>10</sup> | 8.0×10 <sup>10</sup> | 2.0×10 <sup>10</sup> | 2.8×10 <sup>11</sup> | 1.0×10 <sup>11</sup> | 5.0×10 <sup>10</sup> | 9.0×10 <sup>10</sup> |
| Total anaerobes     | 6.0×10 <sup>10</sup> | 1.1×10 <sup>11</sup> | 2.3×10 <sup>11</sup> | 5.0×10 <sup>11</sup> | 2.4×10 <sup>11</sup> | 1.2×10 <sup>11</sup> | 2.1×10 <sup>11</sup> |

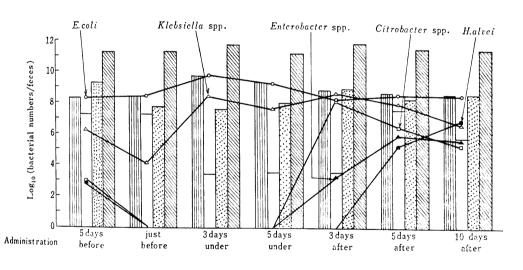

|      | 111 0 (0,0 | 00111g /\ 2,1. \ | •••    |        |        |        |         |
|------|------------|------------------|--------|--------|--------|--------|---------|
| Case | 5 days     | Just             | 3 days | 5 days | 3 days | 5 days | 10 days |
| No.  | before     | before           | under  | under  | after  | after  | after   |
| 1    | _          | _                | _      | _      | _      | _      | _       |
| 2    | _          | _                | -      | _      | _      | _      | _       |
| 3    | -          | _                | _      | -      | _      | _      | _       |
| 4    | -          | _                |        | _      | _      | _      | _       |
| 5    | _          | _                | _      | -      | _      | _      | _       |
| 6    | +          | +                | +      | +      | +      | +      | +       |

Table 16 Toxin production of *C. difficile* in feces of healthy volunteers administered TIPC (3,000mg×2,i.v.)

Fig. 3 Bacterial flora in feces of healthy volunteers administered TIPC (3,000 mg × 2, i. v.)

Enterobacteriaccae Enterococcus spp.

Staphylococcus spp. Total anaerobes



菌数、5例が類似か同台の菌数を示し、平均  $3.8\times10^{10}$  cells/g で、投与開始前 5 日の平均菌数と同台で、C.dif ficile は投与開始前 5 日と同じく分離されず、Case 6 の みに Toxin が認められた。総嫌気性菌数は全例が  $2.0\times10^{10}\sim6.0\times10^{11}$  cells/g で、いずれ 6 投与開始前 5 日と類似か同台の菌数を示し、平均  $1.6\times10^{11}$  cells/g で、投与開始前 5 日の平均菌数と同台であった(Tables 10, 16, Fig. 3)。

# (3) 投与開始3日

Enterobacteriaceae 中 E.coli は 1 例から検出されず他 5 例は  $1.3 \times 10^7 \sim 2.0 \times 10^{10}$  cells/g で、後者の 5 例中 4 例は投与開始日の菌数に比較し 2 段階以上高い菌数、1 例は類似し、平均  $5.1 \times 10^9$  cells/g で、投与開始日の平

均菌数に類似した。Klebsiella spp. は BRL 28500 投与例と同じく投与開始日に比べ分離例は多く,投与開始日に検出された1例と他3例が1.0×10<sup>8</sup>~1.2×10<sup>9</sup> cells/g で、前者の1例は投与開始日より2段階高い菌数を示し、平均2.7×10<sup>8</sup> cells/g で、投与開始前5日に分離されたCitrobacter spp. と Enterobacter spp. は投与開始日と同じく検出できなかった。Enterobacteriaceae全体でみると全例が1.4×10<sup>7</sup>~2.0×10<sup>10</sup> cells/g 域にあり、投与開始日に比べ4例が2段階以上高い菌数、2例が類似の菌数で、平均5.4×10<sup>9</sup> cells/g を示し、投与開始日の平均菌数に類似しまた。その他のグラム陰性桿菌ではPseudomonas spp. が1例に分離され6.4×10<sup>3</sup> cells/g であった。

グラム陽性菌中 Staphylococcus spp. は投与開始日に検出された 3 例中 1 例と他 1 例が各々  $3.6 \times 10^3$ ,  $1.0 \times 10^4$  cells/g を呈し、前者の 1 例は 投与開始日の 菌数 に類似、Enterococcus spp. は全例が  $7.0 \times 10^2 \sim 1.0 \times 10^8$  cells/g で、投与開始日に比較し 1 例が 2 段階高い菌数、3 例が類似か同台の菌数、2 例が 2 段階以上低い菌数を示し、平均  $3.1 \times 10^7$  cells/g で、投与開始日の平均菌数と同台であった。Candida spp. は BRL 28500 投与例よりも早く分離例は増し、投与開始日に検出された 2 例中 1 例と他 4 例が  $1.0 \times 10^2 \sim 5.0 \times 10^4$  cells/g で、前者の 1 例は投与開始日の菌数と同台を呈し、平均  $1.2 \times 10^4$  cells/g であった。

#### (4) 投与開始5日後(投与終了日)

Enterobacteriaceae 中 E. coli は全例が  $3.2 \times 10^5 \sim 1.0 \times 10^{10}$  cells/g 域にあり,投与開始日に比べ 2 例が 3 段階以上高い菌数, 4 例が類似の菌数を呈し,平均  $1.8 \times 10^9$  cells/g で,投与開始日の平均菌数に類似した。 Klebsiella spp. は投与開始日と比較すると検出例は多かったが投与開始 3 日後より 1 例少なく,投与開始日に分離された 1 例以外の 3 例で,  $2.5 \times 10^5 \sim 2.0 \times 10^8$  cells/gを示し,Citrobacter spp. と Enterobacter spp. は分離されなかった。Enterobacteriaceae 全体でみるといずれも  $5.7 \times 10^5 \sim 1.0 \times 10^{10}$  cells/g 域にあり,投与開始日に比べ 2 例が 3 段階以上高い菌数, 4 例が類似の菌数を呈し,平均  $1.8 \times 10^9$  cells/g で,投与開始日の平均菌数に類似した。その他のグラム陰性桿菌では P Seudomonas spp. が投与開始 3 日後に検出された 1 例と他 1 例がいずれも  $2.0 \times 10^4$  cells/g を示した。

グラム陽性菌中 Staphylococcus spp. は投与開始日に分離された3例中1例と他2例が $1.0 \times 10^2 \sim 1.0 \times 10^4$  cells/g で,前者の1例は投与開始日の菌数と同台を呈し,Enterococcus spp. は全例が $1.0 \times 10^2 \sim 6.0 \times 10^8$  cells/g 域にあり,投与開始日に比べ1例が2 段階高い菌数,3 例が類似か同台の菌数,2 例が2 段階以上低い菌数を示し,平均 $1.1 \times 10^8$  cells/g で,投与開始日の平均菌数に類似した。Candida spp. は投与開始日に比較し検出例は多かったが,投与開始3 日後より1 例少なく,

投与開始日に分離された 2 例と他 2 例が  $1.0 \times 10^3 \sim 3.6 \times 10^5$  cells/g で、前者の 2 例は投与開始日の菌数に類似するか同台を呈し、平均  $6.2 \times 10^4$  cells/g であった。

嫌気性菌中 Bacteroides spp. は全例が  $2.0 \times 10^{10} \sim 1.6 \times 10^{11}$  cells/g で、いずれも投与開始日の菌数と類似か同台を示し、平均  $9.0 \times 10^{10}$  cells/g で、投与開始日の平均菌数と同台であった。C.di ficile は投与開始前 5 日,投与開始日及び投与開始 3 日後と同様に検出されず、Case 6 のみに  $10^{10}$  colls/g 域にあり、いずれも投与開始日と類似か同台を呈し、平均  $1.2 \times 10^{11}$  cells/g で、投与開始日の平均菌数と同台であった( $10^{10}$  cells/g で、投与開始日の平均菌数と同台であった( $10^{10}$  cells/g で、投与開始日の平均菌数と同台であった( $10^{10}$  cells/g で、投

#### (5) 投与終了3日後

Enterobacteriaceae 中 E. coli は1 例から分離されず、 他 5 例は 1.7×10<sup>5</sup>~8.0×10<sup>8</sup> cells/g で, 後者の 5 例中 1例は投与開始日に比べ2段階高い菌数, 4例は類似か 同台の菌数を示し、平均 1.7×108 cells/g で、投与開始 日の平均菌数と同台であった。 Klebsiella spp. は投与 開始日に検出された1例と他4例が6.0×104~2.4×109 cells/g で、分離例は投与開始3日後及び投与開始5日後 に比較し多く, 前者の1例は投与開始日より2段階高 く, 平均 4.0×108 cells/g で, Citrobacter spp. と Enterobacter spp. は投与開始前5日に検出された例と異なっ た各1例がそれぞれ 8.0×108, 1.0×104 cells/g であっ た。Enterobacteriaceae 全体でみるとすべてが 1.0× 10<sup>6</sup>~4.0×10<sup>9</sup> cells/g 域にあり、投与開始日に比べ1例 が2段階高い菌数,5例が類似か同台の菌数,平均7.0 ×10<sup>8</sup> cells/g を呈し投与開始日の平均菌数と同台で、そ の他のグラム陰性桿菌は分離されなかった。

グラム陽性菌中 Staphylococcus spp. は投与開始日に検出された3例中1例のみが  $2.0\times10^4$  cells/g で,投与開始日の菌数と同台,Enterococcus spp. は全例が $1.7\times10^6\sim3.9\times10^9$  cells/g 域にあり,投与開始日に比較し1例が3段階高い菌数,5例が類似か同台の菌数を示し,平均 $8.6\times10^8$  cells/g で,投与開始日の平均菌数に類似,Candida spp. は投与開始3日後及び投与開始5日後より分離例は少なく,投与開始日に検出された2例と他1例の3例で,前者の2例は投与開始日の菌数に類似した。

嫌気性菌中 Bacteroides spp. は全例が  $1.0 \times 10^{10} \sim 9.5 \times 10^{11}$  cells/g を呈し、いずれも投与開始日の菌数と類似か同台、平均は  $2.8 \times 10^{11}$  cells/g で、投与開始日の平均菌数に類似し、C.difficile は投与開始前 5 日,投与開始日,投与開始 3 日後及び投与開始 5 日後と同じく分離されず、Case 6 のみに 5 Toxin が認められた。総嫌気

性菌数は全例が  $9.0 \times 10^{10} \sim 1.3 \times 10^{12}$  cells/g 域にあり、 投与開始日より 1 例が 2 段階高い菌数、 5 例が類似か同台の菌数を示し、平均  $5.5 \times 10^{11}$  cells/g で、投与開始日の平均菌数と同台であった(Tables 13,16、Fig.3)。

# (6) 投与終了5日後

Enterobacteriaceace 中 E. coli は投与終了 3 日後に検 出されなかった1例からは分離されず, 他5例は 4.8× 105~1.0×109 cells/g で, この5例は投与開始日に比べ 2例が2段階高い菌数, 2例が同台の菌数, 1例が2段 階低い菌数を呈し、平均 2.9×108 cells/g で、 投与開始 日の平均菌数と同台であった。Klebsiella spp. は投与開 始3日後、投与開始5日後及び投与終了3日後と比較す ると検出例は少なくなり、投与開始日に分離された1例 以外の2例が各々 8.0×104, 5.0×108 cells/g を示し, Citrobacter spp. と Enterobacter spp. は投与開始前 5 日に検出された例とは異なった各1例が1.5×10<sup>7</sup>,5.0 ×106 cells/g で、1 例に H. alvei が 1.0×106 cells/g 分離 された。Enterobacteriaceae 全体でみるとすべてが 4.8 ×105~1.5×109 cells/g 域にあり、投与開始日より2例 が2段階高い菌数、 4例が類似か 同台の 菌数で、 平均 3.8×108 cells/g を呈し、投与開始日の平均菌数と同台 で、その他のグラム陰性桿菌は分離されなかった。

グラム陽性菌中 Staphylococcus spp. は投与開始日に 検出された 3 例中 2 例と他の 2 例が  $1.0 \times 10^4 \sim 2.0 \times 10^8$  cells/g で,前者の 2 例中 1 例は投与開始日に比べ 2 段階 高い菌数、 1 例は同台の 菌数 を示 し, 平均  $3.3 \times 10^7$  cells/g. Enterococcus spp. は全例が  $1.7 \times 10^5 \sim 8.0 \times 10^8$  cells/g 域にあり,いずれも投与開始日の菌数と類似か同台の菌数を呈し,平均  $1.8 \times 10^8$  cells/g で,投与開始日の平均菌数に類似,Candida spp. は投与開始日に分離された 2 例中 1 例と他 1 例のみが各々  $7.0 \times 10^4$ , $9.0 \times 10^4$  cells/g を示し,前者の 1 例は投与開始日の菌数と同台であった。

嫌気性菌中 Bacteroides spp. は全例が  $2.0 \times 10^{10} \sim 2.3 \times 10^{11}$  cells/g で、いずれも投与開始日の菌数と類似か同台、平均は  $9.3 \times 10^{10}$  cells/g で、投与開始日の平均菌数と同台を示し、C. di ficile は投与開始前 5 日、投与開始日、投与開始日、投与開始 3 日後、投与開始 5 日後及び投与終了 3 日後と同じく検出されず、Case 6 のみに Toxin が認められた。総嫌気性菌数は全例が  $1.0 \times 10^{11} \sim 9.0 \times 10^{11}$  cells/g 域にあり、いずれも投与開始日の菌数と類似か同台で、平均  $2.8 \times 10^{11}$  cells/g を示し、投与開始日の平均菌数と同台であった(Tables 14,16,Fig. 3)。

# (7) 投与終了 10 日後

Enterobacteriaceae 中 E.~coli は全例が  $2.0 \times 10^6 \sim 8.0 \times 10^8$  cells/g 域にあり、投与開始日と比較すると 2

例が2段階以上高い菌数、4例が類似か同台の菌数を呈 し、平均 3.0×108 cells/g で、投与開始日の平均菌数と 同台, Klebsiella spp. は投与開始3日後及び投与終了3 日後と同様に投与開始日より分離例は多く, 投与開始日 に検出された1例と他3例が1.0×104~2.1×107 cells/ g で、前者の1例は投与開始日と同台の菌数を示し、平 均 3.7×106 cells/g であった。Citrobacter spp. と Enterobacter spp. は投与開始前5日に分離された例とは異な った各々1例が 1.0×10<sup>6</sup>, 2.0×10<sup>6</sup> cells/g で, H. alvei は投与終了5日後に検出された同じ1例が 3.3×10<sup>7</sup> cells/g を呈した。Enterobacteriaceae 全体でみるとす べてが 2.0×106~8.3×108 cells/g 域にあり、投与開始 日に比べ2例が2段階以上高い菌数, 4例が類似か同台 の菌数で、平均 3.1×10<sup>8</sup> cells/g を示し、投与開始日 の平均菌数と同台であった。その他のグラム陰性桿菌は Pseudomonas spp. が3例から分離され $2.0 \times 10^2 \sim 9.3$ ×10<sup>3</sup> cells/g であった。

グラム陽性菌中 Staphylococcus spp. は投与開始日に検出された3例中1例と他2例が $1.3\times10^3\sim3.0\times10^6$  cells/g で,前者の1例は投与開始日の菌数に類似,Enterococcus spp. は全例が $1.2\times10^5\sim1.3\times10^9$  cells/g 域にあり,いずれも投与開始日の菌数と類似か同台を呈し,平均 $3.2\times10^8$  cells/g で,投与開始日の平均菌数に類似,Candida spp. は投与開始3日後,投与開始5日後と同じく投与開始日に比較し分離例は多く,投与開始日に検出された2例と他の2例が $1.4\times10^3\sim5.0\times10^4$  cells/g を示し,前者の2例は投与開始日の菌数と類似か同台で、平均 $1.2\times10^4$  cells/g であった。

嫌気性菌中 Bacteroides spp. は全例が  $1.0 \times 10^{10} \sim 2.8 \times 10^{11}$  cells/g で、いずれも投与開始日の菌数と類似か同台、平均は  $9.0 \times 10^{10}$  cells/g で、投与開始日の平均菌数と同台を呈し、C. difficile は投与開始前 5 日、投与開始日、投与開始日、投与開始 3.5 日後および投与終了 3.5 日後と同じく検出されず、Case 6 のみに Toxin が認められた。総嫌気性菌数は全例が  $6.0 \times 10^{10} \sim 5.0 \times 10^{11}$  cells/g 域にあり、いずれも投与開始日の菌数と類似か同台を示し、平均  $2.1 \times 10^{11}$  cells/g で、投与開始日の平均菌数と同台であった(Tables 15,16, Fig. 3)。

#### 2. 糞便中薬剤濃度

## 1) BRL 28500 投与例

BRL 28500 を投与して 糞便内細菌叢の変動をみた 同じ 6 例について、投与開始前のチェックとして投与開始前5 日及び投与開始日における糞便中の CVA と TIPC の濃度を測定したが、P. aeruginosa NCTC 10701 から K. pneumoniae subsp. pneumoniae ATCC 29665 で定量可能な薬物の 濃度は 測定できず、 投与開始 3 日後、

投与開始 5 日後及び 投与終了 3, 5, 10 日後も 全 例 が TIPC, CVA 共に検出限界以下であった (Table 17)。

# 2) TIPC 投与例

TIPC を投与して糞便内細菌叢の変動をみた同じ6例について、BRL 28500 投与例と同様に投与開始前、すなわち投与開始前5日と 投与開始日に 糞便中の TIPC 濃度を測定したが、P. aeruginosa NCTC 10701 で定量可能な薬物の濃度は測定できず、投与開始3日後、投与開始5日後及び投与終了3、5、10日後でも全例が検出限界以下であった(Table 18)。

- 3. 薬剤感受性試験
- 1) BRL 28500 投与例
- (1) グラム陽性球菌
- (1) S. aureus

投与開始前, 投与中, 投与終了後の各々 1, 1, 3 株, 計 5 株に対する BRL 28500 の MIC は全株が 0.78~3.13 μg/ml, TIPC の MIC はいずれも 1.56~6.25 μg/ml を示し, BRL 28500 の MIC は TIPC の MIC と類似か同じで, 投与開始前, 投与中, 投与終了後の分離株における 3 群間の MIC 比較では株数は少なかったが, BRL 28500, TIPC 共に変化があるとはいえなかった (Table 19)。

#### (2) coagulase-negative Staphylococci

投与開始前、投与中、投与終了後の各々 3, 2, 6 株, 計 11 株に対する BRL 28500 の MIC は全株が 0.78~3.13 μg/ml, TIPC の MIC はすべてが 0.78~6.25 μg/ml で, S. aureus と同様に BRL 28500 の MIC は TIPC の MIC と類似か同じで, 投与開始前, 投与中,

Table 17 Fecal concentration of BRL28500 after administration in healthy volunteers (3,200mg×2,i.v.)

| Case |       | Age    |      | Body           |       |                  |                | Fecal cor       | centratio       | n (μg/ml)       |                 |                  |
|------|-------|--------|------|----------------|-------|------------------|----------------|-----------------|-----------------|-----------------|-----------------|------------------|
| No.  | Name  | (yrs.) | Sex  | weight<br>(kg) | Drugs | 5 days<br>before | Just<br>before | 3 days<br>under | 5 days<br>under | 3 days<br>after | 5 days<br>after | 10 days<br>after |
|      | 1.0   | 00     | 34   | 50.0           | CVA   | N.D.             | N.D.           | N.D.            | N.D.            | N.D.            | N.D.            | N.D.             |
| 1    | J.S.  | 26     | М.   | 73.0           | TIPC  | N.D.             | N.D.           | N.D.            | N.D.            | N.D.            | N.D.            | N.D.             |
|      | N. T. |        | 3.5  | 00.0           | CVA   | N.D.             | N.D.           | N.D.            | N.D.            | N.F.            | N.D.            | N.D.             |
| 2    | Y.T.  | 24     | М.   | 92.0           | TIPC  | N.D.             | N.D.           | N.D.            | N.D.            | N.D.            | N.D.            | N.D.             |
|      | MD    | 00     | M    | 71.0           | CVA   | N.D.             | N.D.           | N.D.            | N.D.            | N.D.            | N.D.            | N.D.             |
| 3    | M.D.  | 22     | М.   | 71.0           | TIPC  | N.D.             | N.D.           | N.D.            | N.D.            | N.D.            | N.D.            | N.D.             |
| ,    | T.S.  | 01     | M.   | 75.0           | CVA   | N.D.             | N.D.           | N.D.            | N.D.            | N.D.            | N.D.            | N.D.             |
| 4    | 1.5.  | 21     | 101. | 75.0           | TIPC  | N.D.             | N.D.           | N.D.            | N.D.            | N.D.            | N.D.            | N.D.             |
| 5    | J.A.  | 22     | M.   | 70.0           | CVA   | N.D.             | N.D.           | N.D.            | N.D.            | N.D.            | N.D.            | N.D.             |
| Э    | J.A.  | 22     | IVI. | 72.0           | TIPC  | N.D.             | N.D.           | N.D.            | N.D.            | N.D.            | N.D.            | N.D.             |
| 6    | T.F.  | 20     | M.   | 61.0           | CVA   | N.D.             | N.D.           | N.D.            | N.D.            | N.D.            | N.D.            | N.D.             |
| 0    | 1.5.  | 20     | 171. | 64.0           | TIPC  | N.D.             | N.D.           | N.D.            | N.D.            | N.D.            | N.D.            | N.D.             |

N.D.: Not detected

 $Table~18~Fecal~concentration~of~TIPC~after~administration~in~healthy~volunteers~(3,000mg \times 2,i.v.)$ 

| Case |      | Age    |     | Body           |                  |                | Fecal co        | ncentration     | (µg/ml)         |                 |                  |
|------|------|--------|-----|----------------|------------------|----------------|-----------------|-----------------|-----------------|-----------------|------------------|
| No.  | Name | (yrs.) | Sex | weight<br>(kg) | 5 days<br>before | Just<br>before | 3 days<br>under | 5 days<br>under | 3 days<br>after | 5 days<br>after | 10 days<br>after |
| 1    | M.R. | 25     | M.  | 75.0           | N.D.             | N.D.           | N.D.            | N.D.            | N.D.            | N.D.            | N.D.             |
| 2    | K.T. | 24     | M.  | 54.0           | N.D.             | N.D.           | N.D.            | N.D.            | N.F.            | N.D.            | N.D.             |
| 3    | S.M. | 23     | M.  | 58.0           | N.D.             | N.D.           | N.D.            | N.D.            | N.D.            | N.D.            | N.D.             |
| 4    | H.T. | 21     | M.  | 63.0           | N.D.             | N.D.           | N.D.            | N.D.            | N.D.            | N.D.            | N.D.             |
| 5    | Т.Н. | 21     | M.  | 58.0           | N.D.             | N.D.           | N.D.            | N.D.            | N.D.            | N.D.            | N.D.             |
| 6    | K.M. | 21     | M.  | 60.0           | N.D.             | N.D.           | N.D.            | N.D.            | N.D.            | N.D.            | N.D.             |

N.D.: Not detected

Table 19 Susceptibility of BRL28500 and TIPC against S.aureus (5 strains) in human feces administered BRL28500 (3,200mg×2, i.v.)

| 0.78 1.56 | Total<br>No. of       |           | ,   |      |      | MIC (µg/ml) | g/ml) |      |      | Inoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | culum size :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inoculum size: 10¢cells/ml |
|-----------|-----------------------|-----------|-----|------|------|-------------|-------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|           | strains ≤0.05 0.1 0.2 | ≤0.05 0.1 | 0.2 | 0.39 | 0.78 | 1.56        | 3.13  | 6.25 | 12.5 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100≤                       |
|           | В 1                   |           |     |      |      |             | 1     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|           | U 1                   |           |     |      |      | 1           |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|           | A 3                   |           |     |      | 1    | 1           | 1     |      |      | A CONTRACTOR OF THE PERSON OF |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|           | B 1                   |           |     |      |      |             | 1     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|           | U 1                   |           |     |      |      |             | 1     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|           | A 3                   |           |     |      |      | 1           |       | -    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A STATE OF THE PARTY OF THE PAR |                            |

B: Before, U:Under, A:After administration of BRL28500

Table 20 Susceptibility of BRL28500 and TIPC against coagulase-negative staphylococci (11 strains) in human feces administered BRL28500 (3,200mg×2, i.v.)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                |        |     |     |      |      |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | , u I | orio curlino | Inoquiling size: 1062312 /1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------|--------|-----|-----|------|------|-------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|--------------|-----------------------------|
| Drugs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | Total<br>No of |        |     |     |      |      | MIC (µg/ml) | g/ml) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       | Scandin Size | . 10 ceils/mi               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | strains        | ≥ 0.05 | 0.1 | 0.2 | 0.39 | 0.78 | 1.56        | 3.13  | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.5 | 26    | 02           | 100                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B | က              |        |     |     |      | 1    | -           | _     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 3     | 20           | 7100T                       |
| BRL28500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D | 2              |        |     |     |      |      | 1           |       | The state of the s |      |       |              |                             |
| i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V | 9              |        |     |     |      |      | 4           | 2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |              |                             |
| The state of the s | ~ | rs.            |        |     |     |      | -    |             | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       | William      |                             |
| TIPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ר | 2              |        |     |     |      |      |             | -     | and the same of th |      |       |              |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A | 9              |        |     | No. |      | 6.   |             | 1 67  | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |       |              |                             |
| The state of the s |   |                |        |     |     |      |      |             | )     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |       |              |                             |

 $B:Before,\ U:Under,\ A:After\ administration\ of\ BRL28500$ 

Inoculum size: 106cells/ml

投与終了後の分離株における3群間の MIC 比較では株数は少なかったが、 S. aureus と同じく両剤共に変化があるとはいえなかった (Table 20)。

## 3 E. faecalis

投与開始前、投与中、投与終了後の各々 4, 7, 8 株、計 19 株に対する BRL 28500 の MIC は全株が  $25 \,\mu \mathrm{g}/\mathrm{ml}$  から  $100 \,\mu \mathrm{g}/\mathrm{ml}$  以上、TIPC の MIC はいずれも $50 \,\mu \mathrm{g}/\mathrm{ml}$  か  $100 \,\mu \mathrm{g}/\mathrm{ml}$  以上で、 $S. \,aureus$ 、coagulase-negative Staphylococci と同様に BRL 28500 の MIC は TIPC の MIC と類似か同じで、投与開始前、投与中、投与終了後の分離株における 3 群間の MIC の比較では 株数は少なかったが、両剤共に変化があるとはいえなかった(Table 21)。

## 4 E. faecium

投与開始前、投与中、投与終了後の各々 2, 1, 4 株、計 7 株に対する BRL 28500 の MIC は全株が 25  $\mu$ g/ml から  $100~\mu$ g/ml 以上で、S.~aureus、coagulase-negative Staphylococci 及び E.faecalis と同様に BRL 28500 の MIC は TIPC の MIC と類似か同じで、投与開始前、投与中、投与終了後の分離株における 3 群間の MIC の比較では株数は少なかったが、 両剤共に 変化が あるとはいえなかった(Table 22)。

#### ⑤ Micrococcus spp.

投与開始前と投与中の各 3, 1 株, 計 4 株に対する BRL 28500 の MIC は 3 株が 1.56  $\mu$ g/ml か 3.13  $\mu$ g/ml, 1 株が 100  $\mu$ g/ml 以上, TIPC の MIC は 3 株が 3.13~12.5  $\mu$ g/ml, 1 株が 100  $\mu$ g/ml 以上で、BRL 28500 の MIC は TIPC の MIC に類似か同じあるいは 2 段階小を呈し、投与中に分離された 1 株の MIC は BRL 28500, TIPC 共に投与開始前の 3 株における MIC より大を示した(Table 23)。

## (2) グラム陰性桿菌

#### ① E. coli

投与開始前、投与中、投与終了後の各々 17、12、23 株、計 52 株に対する BRL 28500 の MIC は全株が  $0.78\sim50~\mu g/ml$ , TIPC の MIC はすべてが  $0.78~\mu g/ml$  から  $100~\mu g/ml$  以上域にあり、BRL 28500 で MIC が  $0.78\sim3.13~\mu g/ml$  を呈す株は TIPC の MIC と著しい違いはなかったが、BRL 28500 で MIC が  $12.5~\mu g/ml$  以上の株を TIPC の MIC と比較すると類似か 2 段階以上小を示し、投与開始前、投与中、投与終了後の分離株における 3 群間の MIC 比較では両剤共に変化があるとはいえなかった(Table 24)。

# ② K. pneumoniae subsp. pneumoniae

投与開始前,投与中,投与終了後の各々2,10,10 株.計22 株に対する BRL 28500 の MIC は全株が

Susceptibility of BRL28500 and TIPC against E. faecalis (19 strains) in human feces administered BRL28500 (3,200mg×2, i.v.) 21

Total

|             | 50 100 < | 1 | 1 2 | 4        | , | 2 | 1 | 6 | 1    | 33        | , | 7 1 | Walter State                                              |                                         |
|-------------|----------|---|-----|----------|---|---|---|---|------|-----------|---|-----|-----------------------------------------------------------|-----------------------------------------|
|             | 25       |   | 1   |          |   | - |   |   |      |           |   | _   |                                                           |                                         |
|             | 12.5     |   |     |          |   |   |   |   |      | _         |   |     | 1                                                         |                                         |
|             | 6.25     |   |     |          |   |   |   |   |      |           |   |     |                                                           |                                         |
| rg/ml)      | 3.13     |   |     |          |   |   |   |   |      |           |   |     |                                                           |                                         |
| MIC (µg/ml) | 1.56     |   |     |          |   |   |   |   |      |           |   |     |                                                           |                                         |
|             | 0.78     |   |     |          |   |   |   |   |      |           |   |     |                                                           |                                         |
|             | 0.39     |   |     |          |   |   |   |   |      |           |   |     |                                                           |                                         |
|             | 0.2      |   |     |          |   |   |   |   |      |           |   |     | 005                                                       | 200                                     |
|             | 0.1      |   |     |          |   |   |   |   |      |           |   |     | of BRI 28                                                 | 1 01 111110                             |
|             | ≥0.05    |   |     |          |   |   |   |   |      |           |   |     | Iministration                                             | 10111111111111111111111111111111111111  |
| No. of      | strains  | 7 | *   | 7        |   | × |   | 4 | t    | <i>j.</i> | c | 0   | A: After ad                                               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|             |          | В |     | Ω        | < | ₹ | , | n | Ξ    |           | 4 | 4   | Inder.                                                    |                                         |
| Drugs       |          |   |     | BRL28500 |   |   |   |   | TIPC |           |   |     | B: Before, U: Under. A: After administration of RRI 28500 |                                         |

Table 22 Susceptibility of BRL28500 and TIPC against F. faecium (7 strains) in human feces administered BRL28500 (3,200mg×2, i.v.)

| _                              |             |                   |    |          |    |   |      |   |
|--------------------------------|-------------|-------------------|----|----------|----|---|------|---|
| 10°ceils/mi                    |             | 100≤              | 1  | 1        | 2  | 2 | П    | 2 |
| Inoculum size . 10-cells/ iiii |             | 50                | 1  |          | .т |   |      | 2 |
| Inoc                           |             | 25                |    |          | 1  |   |      |   |
|                                |             | 12.5              |    |          |    |   |      |   |
|                                |             | 6.25              |    |          |    |   |      |   |
|                                | g/ml)       | 3.13              |    |          |    |   |      |   |
|                                | MIC (µg/ml) | 1.56              |    |          |    |   |      |   |
|                                |             | 0.78              |    |          |    |   |      |   |
|                                |             | 0.39              |    |          |    |   |      |   |
|                                |             | 0.2               |    |          |    |   |      |   |
|                                |             | 0.1               |    |          |    |   |      |   |
|                                |             | ≥0.05             |    |          |    |   |      |   |
|                                | Total       | No. ot<br>strains | 2  | 1        | 4  | 2 | 1    | 4 |
|                                |             |                   | В  | n        | 4  | В | D    | A |
|                                | ţ           | Drugs             | I. | BRL28500 |    |   | TIPC |   |

B; Before, U; Under, A; After administration of BRL28500

Table 23 Susceptibility of BRL28500 and TIPC against *Micrococcus* spp. (4 strains) in human feces administered BRL28500 (3,200mg×2, i.v.)

| _                          |             |         |   |          |   |   |      |   |
|----------------------------|-------------|---------|---|----------|---|---|------|---|
| moculum size . 10 cells/ml |             | 100≤    |   | 1        |   |   | 1    |   |
| ulum size.                 |             | 20      |   |          |   |   |      |   |
| OUT                        |             | 25      |   |          |   |   |      |   |
|                            |             | 12.5    |   |          |   |   |      |   |
|                            |             | 6.25    |   |          |   | 1 |      |   |
|                            | g/ml)       | 3.13    | 2 |          |   | 1 |      |   |
|                            | MIC (µg/ml) | 1.56    | 1 |          |   |   |      |   |
|                            |             | 0.78    |   |          |   |   |      |   |
|                            |             | 0.39    |   |          |   |   |      |   |
|                            |             | 0.2     |   |          |   |   |      |   |
|                            |             | 0.1     |   |          |   |   |      |   |
|                            |             | ≥0.05   |   |          |   |   |      |   |
|                            | Total       | strains | က | 1        | 0 | က | 1    | 0 |
|                            |             |         | В | n        | A | В | n    | A |
|                            | 2           | sgn i r |   | BRL28500 |   |   | TIPC |   |

B: Before, U: Under, A: After administration of BRL28500

Inoculum size: 106cells/ml

 $1.56\sim25~\mu g/ml$ , TIPC の MIC はすべて  $25~\mu g/ml$  から  $100~\mu g/ml$  以上に分布し、BRL 28500 の MIC は TIPC の MIC よりいずれも 2~Q階以上小を呈し、投与開始前、投与中、投与終了後の分離株における MIC の比較では株数は少なかったが両剤共に変化があるとはいえなかった (Table 25)。

#### ③ K. oxytoca

投与開始前、投与中、投与終了後の各々 1, 3, 3 株, 計 7 株に対する BRL 28500 の MIC は全株が 3.13~12.5  $\mu$ g/ml, TIPC の MIC はすべてが 50  $\mu$ g/ml か 100  $\mu$ g/ml 以上で、BRL 28500 の MIC は TIPC の MIC に比べいずれも 3 段階以上小を示し、投与開始前、投与中、投与終了後の分離株における 3 群間の MIC の比較では株数は少なかったが、両剤共に変化があるとはいえなかった(Table 26)。

#### 4 C. freundii

投与開始前、投与中、投与終了後の各々 2, 1, 3 株, 計 6 株に対する BRL 28500 の MIC は全株が  $1.56\sim12.5\,\mu g/ml$ , TIPC の MIC はすべてが  $1.56\,\mu g/ml$  から  $100\,\mu g/ml$  以上 で、BRL 28500 の MIC はいずれも TIPC の MIC と同じか 3 段階以上小を呈し、株数は少なかったが、投与開始前、投与中の分離株の MIC は BRL 28500, TIPC 共に投与終了後の分離株の MIC より大を示す株があった(Table 27)。

#### (5) E. agglomerans

投与開始前の1株のみでBRL 28500, TIPC 共にMIC  $0.39 \mu g/ml$  を呈した (Table 28)。

#### 6 P. aeruginosa

投与開始前、投与中、投与終了後の各々 3, 2, 2 株, 計 8 株に対する BRL 28500 の MIC は全株が  $6.25 \,\mu g/$  ml から  $100 \,\mu g/$ ml 以上、TIPC の MIC も同じ域にあり、BRL 28500 の MIC は TIPC の MIC と類似か同じで、投与開始前、投与中、投与終了後の分離株の MIC の比較では株数は少なかったが、両剤共に変化があるとはいえなかった(Table 29)。

#### (7) P. fluorescens

投与終了後の1株のみで BRL 28500, TIPC 共に MIC 100 mg/ml 以上を示した (Table 30)。

#### X. maltophilia

投与終了後の1株のみで BRL 28500, TIPC 共に MIC 50  $\mu$ g/ml を呈した (Table 31)。

- 2) TIPC 投与例
- (1) グラム陽性球菌
- (1) S. aureus

投与開始前, 投与中, 投与終了後の各々 4, 1, 5 株, 計 10 株に対する BRL 28500 の MIC は全株が 0.39~

human feces administered BRL28500 (3,200mg×2, i.v.) Ξ. strains) (52 Susceptibility of BRL28500 and TIPC against E.coli 24

| Driigs                                                   |        | Total       |               |           |     |      |      | $MIC (\mu g/ml)$ | cg/ml) |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |      |
|----------------------------------------------------------|--------|-------------|---------------|-----------|-----|------|------|------------------|--------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|
| 9                                                        |        | strains     | ≥0.05         | 0.1       | 0.2 | 0.39 | 0.78 | 1.56             | 3.13   | 6.25 | 12.5 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50 | 100≤ |
|                                                          | В      | 17          |               |           |     |      | 4    | 11               | 1      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1  |      |
| BRL28500                                                 | n      | 12          |               |           |     |      | 2    | 2                | 1      |      | 5    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2  |      |
|                                                          | A      | 23          |               |           |     |      | 5    | 10               | 2      |      | 5    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1  |      |
|                                                          | В      | 17          |               |           |     |      | 4    | 111              | 1      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 1    |
| TIPC                                                     | n      | 12          |               |           |     |      | 2    | 1                | 2      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 7    |
|                                                          | A      | 23          |               |           |     |      | 5    | 10               | 2      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1  | 5    |
| B: Before, U: Under, A: After administration of BRL28500 | Jnder, | A: After ad | Iministration | of BRL285 | 009 |      |      | ,                |        |      |      | The state of the s |    |      |

Inoculum size: 106cells/ml Table 25 Susceptibility of BRL28500 and TIPC against R. pneumoniae subsp. pneumoniae (22 strains) in human feces administered BRL28500 (3,200mg×2, i.v.)

|           |   | Total             |       |     |     |      |      | MIC (µg/ml) | (g/ml) |      |      |    |    |      |
|-----------|---|-------------------|-------|-----|-----|------|------|-------------|--------|------|------|----|----|------|
| Drugs     |   | No. of<br>strains | ≥0.05 | 0.1 | 0.2 | 0.39 | 0.78 | 1.56        | 3.13   | 6.25 | 12.5 | 25 | 20 | 100≤ |
|           | В | 2                 |       |     |     |      |      |             |        | 2    |      |    |    |      |
| BD198500  | = | 10                |       |     |     |      |      |             | 2      | 9    | 2    |    |    |      |
| 000077117 | , | 2                 |       |     |     |      |      |             |        | u    | -    | 6  |    |      |
|           | ٧ | 10                |       |     |     |      |      | ٦.          | 1      | 0    | 4    | 3  |    |      |
|           | u | 6                 |       |     |     |      |      |             |        |      |      | -  |    | 1    |
|           | 3 | 3                 |       |     |     |      |      |             |        |      |      | -  |    | 6    |
| TIPC      | n | 10                |       |     |     |      |      |             |        |      |      |    | ,  | 1    |
|           | A | 10                |       |     |     |      |      |             | ,      |      |      | 7  | 1  | `    |

B; Before, U: Under, A: After administration of BRL28500

Inoculum size: 106cells/ml Susceptibility of BRL28500 and TIPC against K.oxyloca (7 strains) in human feces administered BRL28500 (3,200mg×2, i.v.) Table 26

| 0.39 0.78 | 0.2 |  | ≥ 0.05 0.1 |           |
|-----------|-----|--|------------|-----------|
|           |     |  | 0.1        | ≤0.05 0.1 |
|           |     |  |            |           |
| 4         |     |  |            | -         |
|           | 1   |  |            | m         |
|           |     |  |            | 8.        |
|           |     |  |            | 1         |
|           |     |  |            | m         |
| 1         | 1   |  |            | A 3       |

B: Before, U: Under, A: After administration of BRL28500

Incenting size: 106cells/ml Table 27 Susceptibility of BRL28500 and TIPC against Cheundii (6 strains) in human feces administered BRL28500 (3,200mg×2,i.v.)

| The state of the s |   |                 |       |     |     |      |      |             |        |      |      |    | Thoratan Size : 10 cens) in | 10 cciis) iiii |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------|-------|-----|-----|------|------|-------------|--------|------|------|----|-----------------------------|----------------|
| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | Total<br>No. of |       |     |     |      |      | MIC (µg/ml) | رg/ml) |      |      |    |                             |                |
| egn 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | strains         | ≥0.05 | 0.1 | 0.2 | 68:0 | 0.78 | 1.56        | 3.13   | 6.25 | 12.5 | 25 | 50                          | 100≤           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В | 2               |       |     |     |      |      | 1           |        |      | 1    |    |                             |                |
| BRL28500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n | 1               |       |     |     |      |      |             | 1      |      |      |    |                             |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α | က               |       |     |     |      |      | 3           |        |      |      |    |                             |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В | 2               |       |     |     |      |      | П           |        |      |      |    |                             | г              |
| TIPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n | 1               |       |     |     |      |      |             |        |      |      |    | 1                           |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A | 3               |       |     |     |      |      | 3           |        |      |      |    |                             |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                 |       |     |     |      |      |             |        |      |      |    |                             |                |

B: Before, U: Under, A: After administration of BRL28500

Inoculum size: 106cells/ml Table 28 Susceptibility of BRL28500 and TIPC against E.agglomerans (1 strain) in human feces administered BRL28600 (3,200mg×2, i.v.)

|          |   | Total             |       |     |     |      |      | MIC (µg/ml)                           | (g/ml) |      |      |    |    |      |
|----------|---|-------------------|-------|-----|-----|------|------|---------------------------------------|--------|------|------|----|----|------|
| Drugs    |   | No. of<br>strains | ≥0.05 | 0.1 | 0.2 | 0.39 | 0.78 | 1.56                                  | 3.13   | 6.25 | 12.5 | 25 | 20 | 100≤ |
|          | В | 1                 |       |     |     | 1    |      |                                       |        |      |      |    |    |      |
| BRL28500 | n | 0                 |       |     |     |      |      |                                       |        |      |      |    |    |      |
|          | A | 0                 |       |     |     |      |      |                                       |        |      |      |    |    |      |
|          | m | 1                 |       |     |     | 1    |      |                                       |        |      |      |    |    |      |
| TIPC     | Þ | 0                 |       |     |     |      |      |                                       |        |      |      |    |    |      |
|          | 4 | 0                 |       |     |     |      |      | · · · · · · · · · · · · · · · · · · · |        |      |      |    |    |      |
|          | - |                   |       |     |     |      |      |                                       |        |      |      |    |    |      |

B: Before, U: Under, A: After administration of BRL28500

Table 29 Susceptibility of BRL28500 and TIPC against P. aeruginosa (8 strains) in human feces administered BRL28500 (3,200mg×2, i.v.)

|          |   | Total   |       |     |     |      |      | MIC          | 1-1-1 |      |      | THIO | mocanam size . 10 cens/mi | 10-ceils/ii |
|----------|---|---------|-------|-----|-----|------|------|--------------|-------|------|------|------|---------------------------|-------------|
| Drugs    |   | No. of  |       |     |     |      |      | IMIC (#g/mi) | g/mi/ |      |      |      |                           |             |
|          |   | strains | ≥0.05 | 0.1 | 0.2 | 0.39 | 0.78 | 1.56         | 3.13  | 6.25 | 12.5 | 25   | 20                        | ≥001        |
|          | В | 3       |       |     |     |      |      |              |       | 1    | 2    |      |                           |             |
| BRL28500 | U | . 3     |       |     |     |      |      |              |       | 1    | 1    |      |                           | 1           |
|          | A | 2       |       |     |     |      |      |              |       |      | 2    |      |                           |             |
|          | В | 8       |       |     |     |      |      |              |       | 1    | 2    |      |                           |             |
| TIPC     | Þ | က       |       |     |     |      |      |              |       | 1    | 1    |      |                           | 1           |
|          | A | 2       |       |     |     |      |      |              |       |      | 1    | 1    |                           |             |
|          |   |         |       |     |     |      |      |              |       |      |      |      |                           |             |

B: Before, U: Under, A: After administration of BRL28500

Table 30 Susceptibility of BRL28500 and TIPC against P.fluorescens (1 strain) in human feces administered BRL28500 (3,200mg×2, i.v.)

|                                                          |         |               |              |           |     |      |      |        |             |      |      | Ĭ  | Inoculum size 106cells/ml | 106colle/m1    |
|----------------------------------------------------------|---------|---------------|--------------|-----------|-----|------|------|--------|-------------|------|------|----|---------------------------|----------------|
| Driigs                                                   |         | Total         |              |           |     |      |      | MIC (, | MIC (µg/ml) |      |      |    |                           | IIII (success) |
|                                                          |         | strains       | ≥0.05        | 0.1       | 0.2 | 0.39 | 0.78 | 1.56   | 3.13        | 6.25 | 12.5 | 25 | 50                        | 100≤           |
|                                                          | В       | 0             |              |           |     |      |      |        |             |      |      |    |                           |                |
| BRL28500                                                 | n       | 0             |              |           |     |      |      |        |             |      |      |    |                           |                |
|                                                          | A       | П             |              |           |     |      |      |        |             |      |      |    |                           |                |
| 6                                                        | В       | 0             |              |           |     |      |      |        |             |      |      |    |                           |                |
| TIPC                                                     | D       | 0             |              |           |     |      |      |        |             |      |      |    |                           |                |
| *                                                        | ¥       | 1             |              |           |     |      |      |        |             |      |      |    |                           | 1              |
| B: Before, U: Under, A: After administration of BRL28500 | nder, 1 | 4 : After adı | ministration | of BRL285 | 00  |      |      |        |             |      |      |    |                           |                |

Susceptibility of BRL28500 and TIPC against X. mallophilia (1 strain) in human feces administered BRL28500 (3,200mg×2, i.v.) rable 31

|                                                          |         |                |              |            |     |      |      |       |             |      |      | Ino | culum size | Inoculum size: 106cells/ml |
|----------------------------------------------------------|---------|----------------|--------------|------------|-----|------|------|-------|-------------|------|------|-----|------------|----------------------------|
| Driigs                                                   |         | Total<br>No of |              |            |     |      |      | MIC ( | MIC (µg/ml) |      |      |     |            |                            |
|                                                          |         | strains        | ≥0.05        | 0.1        | 0.2 | 0.39 | 0.78 | 1.56  | 3.13        | 6.25 | 12.5 | 25  | 20         | 100≤                       |
|                                                          | В       | 0              |              |            |     |      |      |       |             |      |      |     |            |                            |
| * BRL28500                                               | n       | 0              |              |            |     |      |      |       |             |      |      |     |            |                            |
|                                                          | A       | п              |              |            |     |      |      |       |             |      |      |     | 1          |                            |
|                                                          | В       | 0              |              |            |     |      |      |       |             |      |      |     |            |                            |
| TIPC                                                     | Þ       | 0              |              |            |     |      |      |       |             | 1    |      |     |            |                            |
|                                                          | А       | 1              |              |            |     |      |      |       |             |      |      |     | 1          |                            |
| B: Before, U: Under, A: After administration of BRL28500 | ıder, ∤ | 1: After adi   | ministration | of BRL2850 | 8   |      |      |       |             |      |      |     |            |                            |

6.25 μg/ml, TIPC の MIC もすべてが同じ域にあり、 BRL 28500 の MIC は TIPC の MIC と類似か同じで、投与開始前、投与中、投与終了後の分離株における 3 群間の比較では株数は少なかったが、BRL 28500 投与例と同様に 両剤共変化があるとはいえなかった (Table 32)。

#### 2 coagulase-negative Staphylococci

投与開始前、投与中、投与終了後の各々 4、3、5 株計 12 株に対する BRL 28500 の MIC は全株が 0.39~ $6.25 \, \mu g/ml$ 、TIPC の MIC はすべてが  $0.78 \sim 12.5 \, \mu g/ml$  で、BRL 28500 の MIC は TIPC の MIC と類似か同じあるいは 2 段階小を示し、投与開始前、投与中、投与終了後の分離株における 3 群間の MIC の比較では株数は少なかったが、BRL 28500、TIPC 共に投与終了後の分離株は投与開始前と投与中の分離株より 2 段階以上大を呈す 3 株があった(Table 33)。

#### 3) E. faecalis

投与開始前、投与中、投与終了後の各々 5, 3, 5 株計 13 株に対する BRL 28500 の MIC は全株が 25~50  $\mu$ g/ml, TIPC の MIC はすべてが 50  $\mu$ g/ml から 100  $\mu$ g/ml 以上を示し、BRL 28500 の MIC は TIPC の MIC に類似か同じで、投与開始前、投与中、投与終了後の分離株における 3 群間の MIC の比較では株数は少なかったが、BRL 28500 投与例と同様に BRL 28500, TIPC 共に変化があるとはいえなかった(Table 34)。

#### 4) E. faecium

投与開始前、投与中、投与終了後の各々 1, 5, 3 株 計 9 株に対する BRL 28500 の MIC は全株が 25  $\mu$ g/ml から 100  $\mu$ g/ml 以上、TIPC の MIC はすべてが50  $\mu$ g/ml から 100  $\mu$ g/ml 以上を呈し、BRL 28500 の MIC は TIPC の MIC と類似か同じで、投与開始前、投与中、投与終了後の分離株における 3 群間の MIC の比較では株数は少なかったが、BRL 28500 投与例と同様に BRL 28500、TIPC 共に変化があるとはいえなかった (Table 35)。

# (2) グラム陰性桿菌

#### 1) E. coli

投与開始前、投与中、投与終了後の各々 15, 12, 22 株. 計 49 株に対する BRL 28500 の MIC は全株が 0.78 μg/ml から 100 μg/ml 以上に分布し、TIPC の MIC もすべてが BRL 28500 と同じ域にあり、BRL 28500 の MIC は TIPC の MIC と類似か同じあるいは 2 段階以上小を示し、投与開始前、投与中、投与終了後の分離株における 3 群間の MIC の比較では 2 剤共に投与開始前より投与中、投与終了後に大を呈する株があった (Table 36)。

Inoculum size: 106cells/ml Table 32 Susceptibility of BRL28500 and TIPC against S.aureus (10 strains) in human feces administered TIPC (3,000mg×2, i.v.)

|                                                      |         | 1                 |              |         |     |      |      | MIC (m/ml) | a/m1)   |      |      |    |    |      |
|------------------------------------------------------|---------|-------------------|--------------|---------|-----|------|------|------------|---------|------|------|----|----|------|
|                                                      |         | l otai            |              |         |     |      |      | N OIM      | (S/ mm/ |      |      |    |    |      |
| Drugs                                                |         | No. of<br>strains | ≥0.05        | 0.1     | 0.2 | 0.39 | 0.78 | 1.56       | 3.13    | 6.25 | 12.5 | 25 | 20 | 100≤ |
|                                                      | В       | 4                 |              |         |     | 1    | 2    |            | 1       |      |      |    |    |      |
| BRL28500                                             | n       | 1                 |              |         |     |      | П    |            |         |      |      |    |    |      |
|                                                      | A       | 5                 |              |         |     |      |      | П          | H       | က    |      |    |    |      |
|                                                      | ď       | 4                 |              |         |     | 1    |      | 2          |         | 1    |      |    |    |      |
|                                                      | 1 :     |                   |              |         |     |      |      | 1          |         |      |      |    |    |      |
| TIPC                                                 | >       | <b>-</b>          |              |         |     |      |      |            |         |      |      |    |    |      |
|                                                      | A       | ß                 |              |         |     |      |      | 1          |         | 4    |      |    |    |      |
| B: Before, U: Under, A: After administration of TIPC | nder, A | \: After ad       | ministration | of TIPC |     |      |      |            |         |      |      |    |    |      |

|                                                                                                                                                      |                            | _ |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---|
| Table 33 Suscentibility of BRL28500 and TIPC against coagulase-negative Staphylococci (12 strains) in human feces administered TIPC (3,000mg×2,1.v.) | Inoculum size : 10¢cells/n |   |

|          |   |                   |       |      |     |      |      |             |        |      |                 |     | -  |      |
|----------|---|-------------------|-------|------|-----|------|------|-------------|--------|------|-----------------|-----|----|------|
|          |   | Total             |       |      |     |      |      | MIC (µg/ml) | (g/ml) |      |                 |     |    |      |
| Drugs    |   | No. of<br>strains | ≥0.05 | 0.1  | 0.2 | 0.39 | 0.78 | 1.56        | 3.13   | 6.25 | 12.5            | 25  | 20 | 100≤ |
|          | В | 4                 |       |      |     | 1    |      | 8           | 1      |      |                 |     |    |      |
| BRL28500 | n | 8                 |       |      |     |      |      | 1           | 2      |      |                 |     |    |      |
|          | A | 5                 |       |      |     |      |      | 1           | 2      | 2    |                 |     | ·  |      |
|          | В | 4                 |       |      |     |      | П    | 1           | 2      |      |                 | ŀ   |    |      |
| TIPC     | n | 60                |       |      |     |      |      |             | က      |      |                 | . : | :  |      |
|          | Α | 2                 |       |      |     |      |      |             | 2      | 2    | <del>-</del> -1 |     |    |      |
|          |   |                   |       | Cara |     |      |      |             |        |      |                 |     |    |      |

B; Before, U; Under, A; After administration of TIPC

Table 34 Suscentibility of BRL28500 and TIPC against E.fa.

|             | • | lable of S | rable 54 Susceptibility of DAL-25000 and LIFC against <i>Espacaus</i> (13 strains) in human feces administered TIFC (3,000mg × 2,1.0.)<br>Inocului | 01 DALL283 | ov and life | o against £. | Jaecalis (13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | strains) in l | numan teces | administer | ed TIPC (5, | Journa × 2, 1. | v.)<br>culum size : | (2, I.V.)<br>Inoculum size: 106cells/ml |   |
|-------------|---|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|------------|-------------|----------------|---------------------|-----------------------------------------|---|
| )<br>Jriide |   | Total      |                                                                                                                                                    |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIC (µg/ml)   | g/ml)       |            |             |                |                     |                                         |   |
| cSn         |   | strains    | ≥0.05                                                                                                                                              | 0.1        | 0.2         | 0.39         | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.56          | 3.13        | 6.25       | 12.5        | 25             | 50                  | 100≤                                    |   |
|             | В | 5          |                                                                                                                                                    |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             |                | ъ.                  |                                         |   |
| BRL28500    | n | 3          |                                                                                                                                                    |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             |                | 3                   |                                         |   |
|             | А | 5          |                                                                                                                                                    |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             | н              | 4                   |                                         |   |
|             | В | 2          |                                                                                                                                                    |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             |                | 5                   |                                         |   |
| TIPC        | n | 3          |                                                                                                                                                    |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             |                | 3                   |                                         |   |
|             | A | 5          |                                                                                                                                                    |            |             |              | The state of the s |               |             |            |             |                | 3                   | 2                                       |   |
|             |   |            | 1                                                                                                                                                  |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             |                |                     |                                         | _ |

B: Before, U: Under, A: After administration of TIPC

Table 35 Susceptibility of BRL28500 and TIPC against Estacium (9 strains) in human seces administered TIPC (3,000 mg × 2, i.v.)

| Inoculum size: 106cells/ml |                | 100≤    |   | 22       | 2 |   | 5    | 2 |                                                      |
|----------------------------|----------------|---------|---|----------|---|---|------|---|------------------------------------------------------|
| culum size                 |                | 20      | 1 |          |   | 1 |      | 1 |                                                      |
| Ino                        |                | 25      |   |          | 1 |   |      |   |                                                      |
|                            |                | 12.5    |   |          |   |   |      |   |                                                      |
|                            |                | 6.25    |   |          |   |   |      |   |                                                      |
|                            | MIC (µg/ml)    | 3.13    |   |          |   |   |      |   |                                                      |
|                            | MIC (          | 1.56    |   |          |   |   |      |   |                                                      |
|                            |                | 0.78    |   |          |   |   |      |   |                                                      |
|                            |                | 0.39    |   |          |   |   |      |   |                                                      |
|                            |                | 0.2     |   |          |   |   |      |   |                                                      |
|                            |                | 0.1     |   |          |   |   |      |   | n of TIPC                                            |
|                            |                | ≥0.05   |   |          |   |   |      |   | Iministration                                        |
|                            | Total<br>No of | strains | 1 | 2        | 3 | 1 | 2    |   | A: After ac                                          |
|                            | ~              |         | В | U        | Α | В | n    | 4 | nder,                                                |
|                            | Drige          | 9       |   | BRL28500 |   |   | TIPC |   | B: Before, U: Under, A: After administration of TIPC |

size: 106cells/ml

Inoculum

# ② K. pneumoniae subsp. pneumoniae

投与開始前,投与中,投与終了後の各々 2, 7, 10 株 計 19 株に対する BRL 28500 の MIC は全株が  $3.13\sim50~\mu g/ml$  に分布し,TIPC の MIC はすべてが  $12.5~\mu g/ml$  から  $100~\mu g/ml$  以上域にあり,BRL 28500 の MIC は 19 株中 1 株が TIPC の MIC に類似,他18 株は TIPC の MIC より 2 段階以上小を示し,投与開始前,投与中,投与終了後の分離株における 3 群間の MIC の比較では株数は少なかったが,BRL 28500 投与 例と同じく BRL 28500,TIPC 共に変化があるとはいえなかった(Table 37)。

#### 3 K. oxytoca

投与終了後の1 株 の み で、BRL 28500 と TIPC の MIC は各々  $6.25 \mu g/ml$ ,  $100 \mu g/ml$  以上で、BRL 28500 の MIC は TIPC より 4 段階小を示した(Table 38)。

#### (4) C. freundii

投与開始前の1 株のみ で、BRL 28500、TIPC 共に MIC 3.13  $\mu$ g/ml を示した(Table 39)。

#### ⑤ E. cloacae

投与終了後の 3 株 の み で、BRL 28500、TIPC 共にMIC はいずれの株も同じで、 $0.78\sim3.13~\mu g/ml$  を呈した (Table 40)。

# 6 E. amnigenus

投与開始前の1株のみで、BRL 28500、TIPC 共にMIC は  $1.56\,\mu g/ml$  を示した(Table 41)。

#### 7 H. alvei

投与終了後の 2 株のみで、BRL 28500 の MIC は 2 株は共に  $1.56 \mu g/ml$ 、TIPC の MIC は  $1.56 \mu g/ml$  か3. 13  $\mu g/ml$  で、BRL 28500 の MIC は TIPC の MIC に類似か同じであった(Table 42)。

#### ® P. aeruginosa

投与開始前の分離株はなく、投与中、投与終了後の各 3株、計 6株に対する BRL 28500 の MIC は全株が  $6.25\,\mu g/ml$  から  $100\,\mu g/ml$  以上、TIPC の MIC もすべてが BRL 28500 の MIC 域にあり、BRL 28500 の MIC は全株が TIPC の MIC と同じで、投与中と投与終了後の MIC の比較では株数は少なかったが、両剤共 に4株は変化がなく、投与終了後の 2 株は投与中の分離 株より大を呈した(Table 43)。

# 4. 副作用および臨床検査値異常

# 1) 副作用

BRL 28500 及び TIPC を投与し糞便内細菌叢への影響をみた各 6 例では発疹、発熱及び胃腸障害などの副作用が出現した例はなかった。

# 2) 臨床検査値異常

前述の同じ例につき投与開始前と投与終了3日後に一

in human feces administered TIPC (3,000mg×2, i.v.) (49 strains) Susceptibility of BRL28500 and TIPC against E.coli 36

| Drings                                               |          | Total<br>No of |               |         |     |      |      | MIC (µg/ml) | (g/ml) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |      |      |
|------------------------------------------------------|----------|----------------|---------------|---------|-----|------|------|-------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|------|
| or res                                               |          | strains        | ≥0,05         | 0.1     | 0.2 | 0.39 | 82.0 | 1.56        | 3.13   | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25 | 50   | 100≤ |
|                                                      | В        | 15             |               |         |     |      | 4    | 6           | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |      |      |
| BRL28500                                             | Þ        | 12             |               |         |     |      |      | m           | 2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1  | 2    | 1    |
|                                                      | Æ        | 22             |               |         |     |      | 2    | 11          |        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -  | · 80 |      |
| -                                                    | В        | 15             |               |         |     |      | 4    | 6           | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |      | 1    |
| TIPC                                                 | U        | 12             |               |         |     |      |      | ო           | 2      | ACCIONATION ACCIONATION A CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The state of the s |    |      | 7    |
|                                                      | А        | 22             |               |         |     |      | 4    | 10          | 2      | A CHARLES A CHAR |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |      | 9    |
| B: Before, U: Under, A: After administration of TIPC | Jnder, . | A: After ad    | Iministration | of TIPC |     |      |      |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |      |      |

Table 37 Susceptibility of BRL28500 and TIPC against K. pneumoniae subsp. pneumoniae (19 strains) in human feces administered TIPC (3,000mg×2, i.v.)

|          |   |                |       |     |     |      |      |       |             |      |      | Ino | Inoculum size: 10°cells/ml | 10°cells/ml |
|----------|---|----------------|-------|-----|-----|------|------|-------|-------------|------|------|-----|----------------------------|-------------|
| Drugs    |   | Total<br>No of |       |     |     |      |      | MIC ( | MIC (µg/ml) |      |      |     |                            |             |
| 0        |   | strains        | ≥0.05 | 0.1 | 0.2 | 0.39 | 0.78 | 1.56  | 3.13        | 6.25 | 12.5 | 25  | 50                         | 100≤        |
|          | В | 2              |       |     |     |      |      |       |             | 2    |      |     |                            |             |
| BRL28500 | n | 7              |       |     |     |      |      |       | -           | 2    | 1    |     |                            |             |
|          | А | 10             |       |     |     |      |      |       |             | 7    | 2    |     | 1                          |             |
|          | В |                |       |     |     |      | d    |       |             |      |      | 1   |                            | 1           |
| TIPC     | n | 7              |       |     |     |      |      |       |             |      |      |     |                            | 7           |
|          | Æ | 10             |       |     |     |      |      |       |             |      | 1    |     | 2                          | 7           |
|          |   |                |       |     |     |      |      |       |             |      |      |     |                            |             |

B: Before, U: Under, A: After administration of TIPC

Table 38 Susceptibility of BRL28500 and TIPC against K.oxyloca (1 strain) in human feces administered TIPC (3,000mg×2, i.v.)

| Inoculum size: 106cells/ml | , , , , , , , , , , , , , , , , , , , | 100×    |   |          |   |   |      | 1  |
|----------------------------|---------------------------------------|---------|---|----------|---|---|------|----|
| culum size .               |                                       | 50      |   |          |   |   |      |    |
| Ino                        |                                       | 25      |   |          |   |   |      |    |
|                            |                                       | 12.5    |   |          |   |   |      | 1. |
|                            |                                       | 6.25    |   |          | - |   |      |    |
|                            | MIC (µg/ml)                           | 3.13    |   |          |   |   |      |    |
|                            | MIC (,                                | 1.56    |   |          |   |   |      |    |
|                            |                                       | 0.78    |   |          |   |   |      |    |
|                            |                                       | 0.39    |   |          |   |   |      |    |
|                            |                                       | 0.2     |   |          |   |   |      |    |
|                            |                                       | 0.1     |   |          |   |   |      |    |
|                            |                                       | ≥0.05   |   |          |   |   |      |    |
|                            | Total<br>No of                        | strains | 0 | 0        |   | 0 | 0    |    |
|                            |                                       |         | В | ם        | Ą | В | n    | A  |
|                            | Drugs                                 |         |   | BRL28500 |   |   | TIPC |    |

B: Before, U: Under, A: After administration of TIPC

Inoculum size: 106cells/ml Table 39 Susceptibility of BRL28500 and TIPC against C.freundii (1 strain) in human feces administered TIPC (3,000mg×2, i.v.)

| Drugs         Total strains strains         No. of strains strains         = 6.05         0.1         0.2         0.39         0.78         1.56         313         6.25         12.5         25         50         100           BRL28500         U         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |   |                   |     |     |      |      |       |        |      |      | 1011 | Tilocarani sizo i to como | 2    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|-------------------|-----|-----|------|------|-------|--------|------|------|------|---------------------------|------|
| rugs   No. of strains   S |          |   | Total             |     |     |      |      | MIC ( | رg/ml) |      |      |      |                           |      |
| 500 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drugs    |   | No. of<br>strains | 0.1 | 0.2 | 0.39 | 0.78 | 1.56  | 3.13   | 6.25 | 12.5 | 25   | 20                        | 100≤ |
| D A B U U A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | В | н                 |     |     |      |      |       | 1      |      |      |      |                           |      |
| A B D A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BRL28500 | ם | 0                 |     |     |      |      |       |        |      |      |      |                           |      |
| B D A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | Ą | 0                 |     |     |      |      |       |        |      |      |      |                           |      |
| B O P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |   |                   |     |     |      |      |       | '      |      |      |      |                           |      |
| n V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | В | 1                 |     |     |      |      |       | 1      |      |      |      |                           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TIPC     | n | 0                 |     |     |      |      |       |        |      |      |      |                           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | A | 0                 |     |     |      |      |       |        |      |      |      |                           |      |

B; Before, U: Under, A; After administration of TIPC

Inoculum size: 106cells/n.l Table 40 Susceptibility of BRL28500 and TIPC against E.cloacae (3 strains) in human feces administered TIPC (3,000mg×2, i.v.)

|          |   | Total             |       |     |     |      |      | MIC ( $\mu g/ml$ ) | g/ml) |      |      |                  |             |      |
|----------|---|-------------------|-------|-----|-----|------|------|--------------------|-------|------|------|------------------|-------------|------|
| Drugs    |   | No. of<br>strains | ≥0.05 | 0.1 | 0.2 | 0.39 | 0.78 | 1.56               | 3.13  | 6.25 | 12.5 | 25               | 50          | 100≤ |
|          | В | 0                 |       |     |     |      |      |                    |       |      |      |                  |             |      |
| BRL28500 | D | 0                 |       |     |     |      |      |                    |       |      |      |                  |             |      |
|          | А | က                 |       |     |     |      | 1    | 1                  | 1     |      |      |                  |             |      |
|          | В | 0                 |       |     |     |      |      |                    |       |      |      |                  |             |      |
| TIPC     | n | 0                 |       |     |     |      |      |                    |       |      |      |                  |             |      |
|          | A | 3                 |       |     |     |      | 1    | 1                  | -     |      |      | A SAME TANADA MA | 18 m 20 m 1 |      |
|          |   |                   |       |     |     |      | -    |                    |       |      |      |                  |             |      |

B; Before, U; Under, A: After administration of TIPC

Table 41 Susceptibility of BRL28500 and TIPC against Eamnigenus (1 strain) in human feces administered TIPC (3,000mg×2,i.v.)

|          |   |                |       |     |     |      |      |       |             |      |      | Ino | culum size | Inoculum size: 106cells/ml |
|----------|---|----------------|-------|-----|-----|------|------|-------|-------------|------|------|-----|------------|----------------------------|
| Drugs    |   | Total<br>No of |       |     |     |      |      | MIC ( | MIC (µg/ml) |      |      |     |            |                            |
| 9        |   | strains        | ≥0,05 | 0.1 | 0.2 | 0.39 | 0.78 | 1.56  | 3.13        | 6.25 | 12.5 | 25  | 50         | 100≤                       |
|          | В | п              |       |     |     |      |      | 1     |             |      |      |     |            |                            |
| BRL28500 | n | 0              |       |     |     |      |      |       |             |      |      |     |            |                            |
|          | A | 0              |       |     |     |      |      |       |             |      |      |     |            |                            |
|          | В | I              |       |     |     |      |      | 1     |             |      |      |     |            |                            |
| TIPC     | Ω | 0              |       |     |     |      |      |       |             |      |      |     |            |                            |
|          | А | 0              |       |     |     |      |      |       |             |      |      |     |            |                            |
|          |   |                |       |     | A   |      |      |       |             |      |      |     |            |                            |

B: Before, U: Under, A: After administration of TIPC

Table 42 Susceptibility of BRL28500 and TIPC against H.alvei (2 strains) in human feces administered TIPG (3,000mg×2, i.v.)

| The second secon |       |             |               |         |     |        |      |        |             |      |      | Inc | . ezis mılın | Inoculum size: 106cells/ml |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|---------------|---------|-----|--------|------|--------|-------------|------|------|-----|--------------|----------------------------|
| Drugs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | Total       |               |         |     |        |      | MIC (, | MIC (µg/ml) |      |      |     |              | TO CCIIS/IIII              |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | strains     | ≥0.05         | 0.1     | 0.2 | 0.39   | 0.78 | 1.56   | 3.13        | 6.25 | 12.5 | 25  | 50           | 100≤                       |
| â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B     | 0           |               |         |     |        |      |        |             |      |      |     |              |                            |
| BRL28500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n     | 0           |               |         |     |        |      |        |             |      |      |     |              |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | А     | 2           |               |         |     |        |      | 2      |             | *    |      |     |              |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В     | 0           |               |         |     |        |      |        |             |      |      |     |              |                            |
| TIPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n     | 0           |               |         |     |        |      |        |             |      |      |     |              |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A     | 2           |               |         |     |        |      | 1      | 1           |      |      |     |              |                            |
| B: Before, U: Under, A: After administration of TIPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nder, | A: After ac | Iministration | of TIPC |     | ).<br> |      |        |             |      |      | -   |              |                            |

Susceptibility of BRL28500 and TIPC against Paeruginosa (6 strains) in human feces administered TIPC (3,000mg x 2, i.v.) Fable 43

| PARTITION AND ADDRESS OF THE PARTITION ADDRESS OF THE PARTITION AND ADDRES |         |                |              |         |     |      |      |       |             |      |      | Inoc | Inoculum size: 106cells/ml | 10°cells/ml |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|--------------|---------|-----|------|------|-------|-------------|------|------|------|----------------------------|-------------|
| Drugs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | Total<br>No of |              |         |     |      |      | MIC ( | MIC (µg/ml) |      |      |      |                            |             |
| Q<br>Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | strains        | ≥0.05        | 0.1     | 0.2 | 0.39 | 82.0 | 1.56  | 3.13        | 6.25 | 12.5 | . 25 | 50                         | 100≤        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В       | 0              |              |         |     |      |      |       |             |      |      |      |                            |             |
| BRL28500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D       | 3              |              |         |     |      |      |       |             | 1    | 2    |      |                            |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A       | က              |              |         |     |      |      |       |             |      | -    |      |                            | 2           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В       | 0              |              |         |     |      |      |       |             |      |      |      |                            |             |
| TIPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U       | 3              |              |         |     |      |      |       |             | 1    | 2    |      |                            |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | А       | 3              |              |         |     |      |      |       |             |      | 1    |      |                            | 7           |
| B: Before, U: Under, A: After administration of TIPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nder, , | A: After ad    | ministration | of TIPC |     |      |      |       |             |      |      |      |                            |             |

般検血(赤血球数、白血球数、白血球百分率、Hb、Ht、血小板数)、プロトロンビン時間、血清生化学的検査〔総蛋白、A/G 比、総ビリルビン、総コレステロール、GOT、GPT、Al-P、LDH、BUN、Creatinine、血清電解質(Na、K、Cl)〕及び尿検査(pH、蛋白、糖、ウロビリノーゲン、沈渣)を実施し、投与前、後の GOT、GPT、Al-P、LDH、BUN、Creatinine だけを Table 44 と 45 に示したが、BRL 28500 投与例では GPT でCase 2 は投与開始前より軽度異常値で 44 K. U、Case 5 は 25 K. U. で、投与終了 3 日後それぞれ 104、42 K. U、へと異常上昇したが、その後のチェックはなされていないことから経過は不明で、TIPC 投与例では異常値を呈した例はなく、これらの検査以外の項目では両剤共に異常値をきたした例はなかった(Tables 44、45)。

#### III. 考 察

抗菌製剤をヒトに投与した場合の副作用の1つとして下痢がある。その原因は腸内細菌叢のみだれや菌交代、場合によっては C. difficile が関与するといわれて いるが、その他の細菌も関係する可能性があると述べられている<sup>4</sup>)。

そこで新しく開発された CVA-K と TIPC が力価比1:15 で配合された注射用抗生物質 BRL 28500 もこの面での検討が必要で、20~26 歳、平均22.5 歳、体重54~92 kg、平均67.9 kg の健康男性12 例中各6 例にBRL 28500 を1回の投与量3,200 mg、対照薬としてTIPCを1回の投与量3,000 mg、両剤共に1日朝、夕2回、one shot 静注で述べ6日間、実質5日間投与し、投与開始前5日、投与開始日、投与開始3日後、投与開始5日後(投与終了日)、投与終了3,5,10日後における糞便内細菌叢の変動を観察し、両薬剤投与時の糞便中薬剤濃度を測定、分離株に対するBRL 28500、TIPCの薬剤感受性を測定し、投与開始前、投与中、投与終了後の3群間におけるBRL 28500とTIPCのMICを比較すると共に副作用及び臨床検査値への影響を検討した。

まず糞便内細菌叢への影響であるが、BRL 28500 投与6例の Enterobacteriaceae 中 E. coli は投与開始3日後、投与開始5日後及び投与終了10日後に各々1,2,1例から分離されなかったが、投与開始前5日、投与開始日、投与終了3,5日後は全例から検出され、各検査日の平均菌数は投与開始前5日と投与開始日共に10°cells/g台、投与開始3日後は10°cells/g台を示し、投与開始前の2検索日の菌数に類似したが、投与開始5日後及び投与終了3日後は各々10¹0,10°cells/g台で、投与開始前の2検索日より3,2段階高い菌数を示し、投与解的前の2検索日より3,2段階高い菌数を示し、投与終了5,10日後は各々10³,10°cells/g台で投与開始前の2検索日と類似か同台であった。Klebsiella spp.は投

|      |        |         |        |         | ,      |        |        |       | ,      |        |           |           |
|------|--------|---------|--------|---------|--------|--------|--------|-------|--------|--------|-----------|-----------|
| Case | G.O.T  | .(K.U.) | G.P.T  | .(K.U.) | Al-P(n | nU/ml) | LDH(   | W.U.) | BUN(   | mg/dl) | Creatinii | ne(mg/dl) |
| No.  | Before | After   | Before | After   | Before | After  | Before | After | Before | After  | Before    | After     |
| 1    | 16     | 25      | 11     | 20      | 231    | 235    | 252    | 289   | 11.4   | 12.7   | 1.2       | 1.0       |
| 2    | 22     | 38      | 44     | 104     | 181    | 163    | 240    | 272   | 17.2   | 13.7   | 1.1       | 1.0       |
| 3    | 13     | 17      | 9      | 11      | 168    | 142    | 265    | 266   | 12.9   | 10.7   | 1.0       | 0.9       |
| 4    | 34     | 24      | 48     | 54      | 253    | 228    | 319    | 297   | 12.8   | 14.6   | 1.1       | 0.9       |
| 5    | 22     | 20      | 25     | 42      | 192    | 196    | 299    | 348   | 12.9   | 13.2   | 1.1       | 1.0       |
| 6    | 14     | 21      | 8      | 28      | 258    | 225    | 264    | 289   | 15.6   | 11.2   | 1.5       | 1.2       |

Table 44 Laboratory findings administered BRL28500 (3,200mg × 2,i.v.)

Table 45 Laboratory findings administered TIPC (3,000mg×2,i.v.)

| Case | G.O.T. | (K.U.) | G.P.T  | .(K.U.) | Al-P(n | nU/ml) | LDH(   | W.U.) | BUN(   | mg/dl) | Creatinin | ne(mg/dl) |
|------|--------|--------|--------|---------|--------|--------|--------|-------|--------|--------|-----------|-----------|
| No.  | Before | After  | Before | After   | Before | After  | Before | After | Before | After  | Before    | After     |
| 1    | 11     | 17     | 8      | 14      | 160    | 200    | 82     | 119   | 12.2   | 13.7   | 1.2       | 1.1       |
| 2    | 15     | 16     | 13     | 26      | 189    | 182    | 259    | 270   | 9.5    | 9.7    | 1.2       | 0.9       |
| 3    | 18     | 18     | 15     | 21      | 212    | 203    | 270    | 280   | 20.6   | 17.0   | 1.1       | 1.0       |
| 4    | 15     | 22     | 8      | 29      | 166    | 151    | 226    | 273   | 15.9   | 14.7   | 1.2       | 1.0       |
| 5    | 12     | 14     | 8      | 10      | 126    | 127    | 249    | 265   | 16.5   | 15.7   | 1.2       | 1.0       |
| 6    | 12     | 17     | 9      | 16      | 173    | 160    | 296    | 304   | 14.5   | 13.9   | 1.1       | 1.1       |

与開始前5日と投与開始日は各2,1 例から分離された が, 投与開始3日後, 投与開始5日後及び投与終了3日 後は各々 4, 6, 5 例から検出され、分離例は多くなり、 それぞれの平均菌数は 10<sup>7</sup>, 10<sup>7</sup>, 10<sup>8</sup> cells/g 台で, 投与 終了 5, 10 日後の検出例はいずれも3例と少なくなっ た。Citrobacter spp. は投与開始前5日,投与開始3日 後,投与終了 3, 5, 10 日後に各々 2, 1, 1, 2, 1 例から 分離されたが一定の傾向はなく, Enterobacter spp. も 投与開始日のみ1例からの検出にとどまった。Enterobacteriaceae 全体では投与開始前5日,投与開始日の平 均菌数はいずれも 107 cells/g 台を示し、投与開始 3 日後 は 10<sup>8</sup> cells/g 台で投与開始前の 2 検索日と類似,投与開 始5日後と投与終了3日後は E. coli の平均菌数が増加 したことが影響して各々 10<sup>10</sup>, 10<sup>0</sup> cells/g 台を呈し, 投 与開始前の2検索日に比べそれぞれ3,2段階高く,投 与終了 5, 10 日後はいずれも 10° cells/g 台で, 投与開始 前の2検索日に類似した。その他のグラム陰性桿菌では Pseudomonas spp. が投与開始前5日,投与開始日,投 与開始3日後,投与開始5日後,投与終了3,5日後に 各々 2, 2, 1, 2, 3, 1 例から分離されたが一定の傾向 を示さなかった。

グラム陽性菌中 Staphylococcus spp. は投与開始5日 後は全例から検出されなかったが、投与開始前5日、投 与開始日、投与開始3日後、投与終了3,5,10日後は 各々2,4、4,2,1,4例から分離され、すべてが10<sup>2</sup>~ 10<sup>8</sup> cells/g 台の域にあり、投与開始5日後から投与終了 5日後に検出例が少なくなる傾向にあった。Enterococus spp. は投与開始日と投与開始5日後に各1例から分離されなかったが、他の5検索日は全例から検出され、いずれの検索日も平均菌数は10<sup>7</sup>~10<sup>9</sup> cells/g 域にあり、著しい変化はなく、Micrococcus spp. は投与開始前5日に3例と投与開始3日後に1例のみから分離され、前者の3例は10<sup>2</sup>~10<sup>6</sup> cells/g 台、後者の1例は10<sup>4</sup> cells/g 台で一定の傾向にはなかった。Candida spp. は投与開始前5日、投与開始日及び投与開始3日後は各々2、3例からの検出にとどまっていたが、投与開始5日後、投与終了3日後及び投与終了5日後は各々5、4、4例と分離例は多くなったが、平均菌数は10<sup>3</sup>~10<sup>4</sup> cells/g 台で、著しい菌数の増加はみられず、投与終了10 日後の検出例は少なくなり3例で、いずれも10<sup>2</sup>~10<sup>5</sup> cells/g 台であった。

嫌気性菌中 Bacteroides spp. はいずれの検索日も平均菌数は  $10^{10}\sim10^{11}$  cells/g 台で変化はなく、C. difficile は全例から分離されなかったが、Case~1 で投与開始前5日,投与開始日及び投与開始3日後、Case~2 で投与開始日と投与開始3日後に Toxin~が認められ、総嫌気性菌数はT 検索日共に 平均菌数は  $10^{10}\sim10^{11}$  cells/g 台で変化はなかった。

TIPC 投与 6 例の Enterobacteriaceae 中 E. coli は投与開始前 5 日,投与開始 3 日後,投与終了 3,5 日後各 1 例で検出されなかったが,いずれの検索日も平均萬数は  $108\sim10^9$  cells/g 台で,BRL 28500 投与例のように菌

数が増加する傾向は示さなかった。Klebsiella spp. は投 与開始前5日と投与開始日は各1例のみから分離された が、投与開始3日後は4例と検出例は増加し、平均菌数 は 10<sup>8</sup> cells/g 台,投与開始 5 日後は 3 例から 検出 さ れ 105~108 cells/g 台, 投与終了3日後は再び検出例は増加 し5例で, 平均菌数は 108 cells/g 台, 投与終了 5 日後の 分離例は2例と少なくなったが、投与終了 10 日後には 再度検出例は4例と多くなり、平均菌数は10° cells/g 台 で、BRL 28500 投与例に類似の傾向を示した。Citrobacter spp. は投与開始前5日, 投与終了3,5,10日後に各 1例のみから分離され 108~108 cells/g 台, Enterobacter spp. は投与開始前5日,投与終了3,5,10日後に各 1例のみから検出され 103~106 cells/g 台, H. alvei は投 与終了 5, 10 日後のみ同一例が各々 10<sup>6</sup>, 10<sup>7</sup> cells/g 台 を示し、3菌種共に一定の傾向はなかった。 Enterobacteriaceae 全体ではいずれの検索日でも平均菌数は 108~109 cells/g 台で、BRL 28500 投与例のような変化 はなく、その他のグラム陰性桿菌では Pseudomonas spp. が投与開始3日後,投与開始5日後及び投与終了 10 日後各々 1, 2, 3 例に分離され, 102~104 cells/g 台 で、著しい菌数の増加を呈する例はなかった。

グラム陽性菌中 Staphylococcus spp. は投与開始前 5 日及び投与開始日に各々 4,3 例から検出され、前者の 平均菌数は 10<sup>7</sup> cells/g 台, 後者は 10<sup>2</sup>~10<sup>8</sup> cells/g 台域 で、投与開始3日後及び投与開始5日後の分離例は各々 2,3 例,投与終了3日後の検出例は1例と少なくなり, 投与終了 5,10 日後は各々 4,3 例から分離され,前者 の平均菌数は 10<sup>7</sup> cells/g 台,後は 10<sup>3</sup>~10<sup>6</sup> cells/g 台で, BRL 28500 投与例に類似の傾向を示した。Enterococcus spp. はいずれの検索日も全例から検出され, 平均菌数は 10<sup>7</sup>~10<sup>9</sup> cells/g 台で、著しい変化はなく、 Micrococcus spp. はどの検索日でも全例から分離されなかった。Candida spp. は投与開始前5日と投与開始日は各々1,2例 のみからの検出であったが、投与開始3日後及び投与開 始5日後に各々 5, 4 例と分離例は増加し,平均菌数は いずれも 10<sup>4</sup> cells/g 台, 投与終了 3, 5 日後は各々 3, 2 例から検出されいずれも 10°~105 cells/g 台であったが, 投与終了 10 日後は再び分離例は増加し4例で,平均菌 数は 104 cells/g 台で,BRL 28500 投与例に類似の傾向 にあった。

嫌気性菌中 Bacteroides spp. はいずれの検索日も全例が平均菌数  $10^{10}\sim10^{11}$  cells/g 台で変化はなく,C.di f.di 
BRL 28500 投与 6 例における糞便中の CVA と TIPC の濃度はいずれの測定日も全例が 検出限界以下、TIPC 投与の 6 例でも 糞便中の TIPC 濃度はいずれの 測定日もすべての例が検出限界以下であった。BRL 28500 投与例で BRL 25000 投与例成績と同様に $^{50}$  CVA がいずれの 例も検出限界以下であった原因は大槻らのラットでの報告 $^{50}$  と同じようにヒトでも消化管内で分解されるためと 考えられ、TIPC でも全例が検出限界以下であった原因は,たとえ TIPC の一部が消化管内に排泄されても,配合剤の  $\beta$ -lactamase 阻害剤である CVA は前述のように分解されることから糞便内の 種々の細菌が 産生する  $\beta$ -lactamase による分解あるいは内容物により活性が低下するためと思われる。TIPC 投与例でも全例が検出限界以下であった原因は前述の BRL 28500 投与例の TIPC と同じことが考えられる。

次に BRL 28500 及び TIPC を投与し糞便内細菌叢へ の影響をみた各6例の糞便から分離した種々の細菌につ き接種菌量 10<sup>6</sup> cells/g で BRL 28500 と TIPC の感受性 を測定し、投与開始前、投与中、投与終了後の3群間に おける MIC を比較したところ, BRL 28500 投与例では グラム陽性球菌中 S. aureus 5 株に対する BRL 28500 の MIC は全株が 0.78~3.13 μg/ml, TIPC の MIC は すべてが 1.56~6.25 μg/ml で, 両剤は類似か同じ MIC を示し, coagulase-negative Staphylococci 11 株に対す る BRL 28500 の MIC はいずれも 0.78~3.13 μg/ml, TIPC の MIC は全株が 0.78~6.25 µg/ml で, S. aureus と同様に両剤は類似か同じ MIC を呈した。E.faecalis 19 株に対する BRL 28500 の MIC はすべてが 25 μg/ml から 100 μg/ml 以上, TIPC の MIC はいずれも 50 μg/ml から 100 μg/ml 以上で、S. aureus 及び coagulase-negative Staphylococci と同様に両剤は類似か同じ MIC を示し、E. faecium 7株に対する BRL 28500 の MIC は全株が 25 μg/ml から 100 μg/ml 以上, TIPC の MIC はすべてが 50 μg/ml から 100 μg/ml 以上で, S. aureus, coagulase negative Staphylococci 及び E. faecalis と同じく両剤は類似か 同様の MIC を示し、これ ら4菌種における投与開始前,投与中,投与終了後の MIC の比較では株数は少なかったが、 両剤共に 変化が あるとはいえなかった。Micrococcus spp. 4株に対する BRL 28500 の MIC は3株が 1.56 µg/ml か 3.13 µg/ ml, 1株が 100 µg/ml 以上, TIPC の MIC は3株が 3.13~12.5 µg/ml, 1 株が 100 µg/ml 以上で、BRL 28500 の MIC は TIPC の MIC に類似か同じあるいは 2段階小を呈し、投与中に分離された1株の MIC は両 剤共に 投与開始前の3株における MIC より 大であっ た。

グラム陰性桿菌中 E. coli 52 株に対する BRL 28500 の MIC は全株が 0.78~50 µg/ml, TIPC の MIC はす べてが 0.78 µg/ml から 100 µg/ml 以上域にあり、BRL 28500 で MIC が 3.13 μg/ml より小を示した株は TIPC の MIC と著しい違いはなかったが、BRL 28500 で MIC が 12.5 μg/ml より大の株は TIPC の MIC と類 似か 2 段階以上小を呈 した。 K. pneumoniae subsp. pneumoniae 22 株に対する BRL 28500 の MIC はいず れも 1.56~25 μg/ml, TIPC の MIC は全株が 25 μg/ml から 100 μg/ml 以上にあり、BRL 28500 の MIC はすべ てが TIPC の MIC より 2 段階以上小を示し, K. oxytoca 7株に対する BRL 28500 の MIC はいずれも 3.13~ 12.5 μg/ml, TIPC の MIC は全株が 50 μg/ml か 100 μg/ml 以上で、BRL 28500 の MIC はすべてが TIPC の MIC に比べ3段階以上小を呈し、これら3菌種にお ける投与開始前、投与中、投与終了後の MIC の比較で は株数の少ない菌種もあったが、両剤共に変化があると はいえなかった。C. freundii 6株に対する BRL 28500 の MIC はいずれも 1.56~12.5 μg/ml, TIPC の MIC は全株が 1.56 µg/ml から 100 µg/ml 以上で, BRL 28500 の MIC はすべてが TIPC の MIC と同様か 3 段 階以上小を示し、 投与開始前、 投与中、 投与終了後の MIC 比較では株数は少なかったが両剤共に投与開始前, 投与中の分離株は投与終了後の分離株より大を呈する株 があった。E. agglomerans 1株に対する MIC は両剤共 に 0.39 μg/ml, P. aeruginosa 8 株に対する両剤の MIC はいずれも 6.25 µg/ml から 100 µg/ml 以上で, 両剤共 に類似か同じ MIC を呈し、投与開始前、投与中、投与 終了後の MIC の比較では株数は少なかったが両剤共に 変化があるとはいえず、 P. fluorescens 1株に対する MIC は両剤共に 100 µg/ml 以上, X. maltophilia 1株に 対する MIC でも両剤は 50 µg/ml と同様で、グラム陽 性球菌グラム陰性桿菌共に今日までに報告されている菌 種の MIC については類似した2)。

一方、TIPC 投与例ではグラム陽性球菌中 S.aureus 10 株に対する MIC は両剤共に  $0.39\sim6.25~\mu g/ml$  域にあり、BRL 28500 の MIC は TIPC の MIC と類似か同様で投与開始前、投与中、投与終了後の MIC 比較では株数は少なかったが、BRL 28500 投与例と同じく変化があるとはいえず、coagulase-negative Staphylococci 12 株に対する BRL 28500 の MIC はすべてが  $0.39\sim6.25~\mu g/ml$ 、TIPC の MIC はいずれも  $0.78\sim12.5~\mu g/ml$  で、BRL 28500 の MIC は TIPC の MIC と類似か同じあるいは 2 段階小を示し、投与開始前、投与中、投与終了後の MIC と比べると株数は少なかったが、両剤共に投与終了後の分離株は投与開始前と投与中の分離株

より 2 段階以上大を呈する株があった。E.faecalis 13 株に対する BRL 28500 の MIC は全株が  $25\sim50~\mu g/ml$ , TIPC の MIC はすべてが  $50~\mu g/ml$  から  $100~\mu g/ml$ , E.faecium 9 株に対する BRL 28500 の MIC はいずれも  $25~\mu g/ml$  から  $100~\mu g/ml$ , TIPC の MIC は全株が  $50~\mu g/ml$  から  $100~\mu g/ml$  以上で、これら 2 菌種に対する両剤の MIC は類似か同じで、投与開始前、投与中、投与終了後の 2 菌種に対する MIC の比較では株数は少なかったが、BRL 28500 投与例と同様に変化があるとはいえなかった。

グラム陰性桿菌中 E. coli 49 株に対する MIC は両剤 共に 0.78 µg/ml から 100 µg/ml 以上に分布し、BRL 28500 の MIC は TIPC の MIC と類似か同じあるいは 2 段階以上小を示し、投与開始前、投与中、投与終了後 の分離株における3群間の MIC を比べると両剤共に投 与開始前より投与中、投与終了後に大を呈する株があっ た。K. pneumoniae subsp. pneumoniae 19 株に対する BRL 28500 の MIC はいずれも 3.13~50 μg/ml, TIPC の MIC は全株が 12.5 μg/ml から 100 μg/ml 以上域に あり、BRL 28500 の MIC は TIPC の MIC と1株が 類似, 他 18 株は2段階小を示し, 投与開始前, 投与 中、投与終了後の分離株における3群間の MIC 比較で は株数は少なかったが、BRL 28500 投与例と同様に両剤 共に変化はなく、K. oxytoca 1株に対する BRL 28500 と TIPC の MIC は各々 6.25 µg/ml, 100 µg/ml 以上 で、BRL 28500 の MIC は TIPC の MIC より4段階 小を呈した。C. freundii 1株に対する MIC は両剤共に 3.13 µg/ml, E. cloacae 3 株に対する MIC でも両剤共 に 0.78~3.13 μg/ml, E. amnigenes 1 株に対する MIC は両剤共に 1.56 µg/ml を示し、これら3菌種に対する BRL 28500 の MIC は同じで、 H. alvel 2 株に対する BRL 28500 の MIC は 2 株共に 1.56 µg/ml, TIPC の MIC は 1.56 μg/ml か 3.13 μg/ml で、BRL 28500 の MIC は TIPC の MIC に類似した。P. aeruginosa 6株 に対する MIC は両剤共にすべてが 6.25 μg/ml から 100 μg/ml 以上を呈し,BRL 28500 の MIC は TIPC の MIC と同じで、投与中と投与終了後の MIC を比べると 分離株数は少なかったが、 両剤共に4株は変化を示さ ず、投与終了後の2株は投与中の分離株より大を呈し、 グラム陽性球菌及びグラム陰性桿菌共に今日までに報告 されている菌種の MIC については類似した<sup>2)</sup>。

副作用の出現は BRL 28500, TIPC 投与例共になく。 臨床検査値への影響では BRL 28500 投与の 6 例中 2 例 で GPT の異常値がみられ、1 例は投与開始前に 44 K. U. と軽度異常値を示していたが 投与終了 3 日後 <sup>104</sup> K. U. へと異常上昇、1 例は投与開始前 25 K. U. から 投与終了3日後42 K. U. へと軽度異常上昇を呈したが、 両者共にその後のチェックはなされていないことから経 過は不明で、その他の検査で異常をきたした例はなかっ た。

#### 文 献

- READING, C. & M. COLE: Clavulanic acid: a beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 11(5): 852~857, 1977
- 2) 新薬シンポジウム BRL 28500 (Clavulanic acid-Ticarcillin)。第 33 回日本化学療法学会総会、 May 23~25, 東京 1985
- ALLEN, S. D: Manual of Clinical Microbiology, 4th ed., Edited by LENNETTE, E. D., A. BA-LOWS, W. J. HAUSLERS JR, and H. J. SHADOMY,

- p. 434~444, American Society for Microbiology, Washington, 1985
- 4) 坂崎利一:下痢-腸炎と腸内菌叢。最新医学 33: 2030~2033. 1978
- 5) 本廣 孝, 田中耕一, 古賀達彦, 島田 康, 冨田 尚文, 阪田保隆, 藤本 保, 西山 亨, 久田直 樹, 石本耕治, 富永 薫, 山下文雄:成人におけ る BRL 25000 (Clavulanic acid-Amoxicillin) 及び Amoxicillin 投与時の 糞便内細菌叢への影 響。Jap. J. Antibiotics 38:441~480, 1985
- 6) 大槻俊治,三次孝一,牛沢幸司,江角凱夫,南保俊雄,横島徽豪,幸嶋祥亘,西岡佳隆,熊倉博之, P. F. LANGLEY: BRL 25000 の体内動態。第1報。ラットにおける BRL 14151 K 投与時の吸収,分布,排泄および代謝。Chemotherapy 31 (Suppl. 2): 297~310, 1983

# EFFECT OF BRL 28500 (CLAVULANIC ACID-TICARCILLIN) ON BACTERIAL FLORA IN HUMAN FECES

TAKASHI MOTOHIRO, AKIRA KAWAKAMI, MASASHI ARAMAKI, KOICHI TANAKA, TATSUHIKO KOGA, YASUSHI SHIMADA, SHOBUN TOMITA, YASUTAKA SAKATA, TAMOTSU FUJIMOTO, TOHRU NISHIYAMA, NAOKI KUDA, KOJI ISHIMOTO, KAORU TOMINAGA and FUMIO YAMASHITA

Department of Pediatrics, School of Medicine, Kurume University

BRL 28500, a formulation of clavulanic acid (CVA 1 part) and ticarcillin (15 parts) and ticarcillin alone (TIPC) (as a control) were administered to healthy volunteers, aged 20~26 years. Volunteers were separated into 2 groups of 6 and each drug was administered intravenously twice a day for 5 days. The fecal flora were studied before dosage, during administration and after the administration course was completed. Fecal concentrations of TIPC and CVA and the susceptibility of the bacteria to TIPC, CVA and BRL 28500 were measured. Side effects and laboratory findings were also checked. The results obtained were as follows:

- 1. In the group receiving BRL 28500 (3, 200 mg × 2/day), the fecal population of *E. coli* increased by 2 or 3 logarithms both 5 days after initiation and 3 days after end of administration. At the same time, the number of subjects from whom *Klebsiella* spp. were detected, increased whilst for *Staphylococcus* spp. the number decreased. These changes returned to initial levels 5 or 10 days after the end of administration. No consistent changes in the fecal population were noted for the other Gram-negative bacilli, Gram-positive organisms or anaerobic bacteria. In the TIPC (3,000 mg×2/day) group, the number of cases from which *Klebsiella* spp. and *Staphylococcus* spp. were detected changed in the same manner as with BRL 28500 but no consistent changes in population were noted for *E. coli*, the other Gram-negative bacilli, Gram-positive organisms or anaerobic bacteria.
  - 2. The fecal concentrations of TIPC and CVA were below the detection limit in all cases.
- 3. The MICs of TIPC and BRL 28500 against fecal isolates from the volunteers, using inoculum sizes of 106 cells/ml. The results were similar to those reported in other publications and in particular BRL 28500 was found to have a stronger effect than TIPC against many Gram-negative bacilli.
- 4. No side effects were noted in either group. Slight GPT elevation was noted in 2 cases in the BRL 28500 group but no abnormal finding was noted in any subject of the TIPC group.