RU 28965の体液内濃度測定法に関する研究(I) Bioassay 法による測定法検討

山本照雄・城塚美喜雄・白石英幸 斎藤健治・奥井 清 日本ルセル株式会社研究所

新規マクロライド系抗生物質 RU 28965の Bioassay 法による体液内濃度測定法について検討した。 検定菌は Micrococcus luteus ATCC 9341が最も高い測定感度を示し、検定用培地は日抗基力価試験 用培地(ペプトン 6 g, ブドウ糖 1 g, 酵母エキス 3 g, 肉エキス1.5 g, 東天15 g, pH 8.5)が鮮明な阻 止像を与えた。

濃度測定範囲は薄層 cup 法により、0.1~10 μg/ml であった。

培養方法は25℃、1時間の予備拡散が必要であった。

血漿中濃度測定に際し、酢酸エチルによる抽出を前処理として必要としたが、回収率は良好であった。

尿中濃度測定は血漿中濃度測定と同様な前処理後、Bioassay を行った。

健常人に RU 28965を経口投与したときの血漿及び尿試料について、Bioassay 法と HPLC 法とによる測定値を比較したところ良好な相関性が認められた。

RU 28965はエリスロマイシンの胃酸での分解性を改善し、良好な吸収性を目的として、フランス、ルセル・ユクラフ社において開発された新規14員環マクロライド系半合成抗生物質であり、その構造を Fig. 1 に示した。

RU 28965は,他のマクロライド系抗生物質と同様な抗菌スペクトル,in vitro 抗菌力を有し,グラム陽性菌,嫌気性菌,Mycoplasma,Legionella,Chlmydia に良好な感受性を示す」。

Bioassay 法により RU 28965の体液内濃度を測定するにあたり、その体内動態を感受性菌の MIC 値と併せて検討するためには、検出限界を少なくとも0.1 µg/ml とする必要がある。この目的を達すべく、測定条件に関して種々の検討を行ったので報告する。

I. 材料と方法

1. 使用薬剤

RU 28965はフランス, ルセル・ユクラフ社より供給された標準品(Lot No. 1S-0959)を用いた。

- 2. Bioassay 法
- 1) 検定菌

Micrococcus luteus ATCC 9341, Bacillus subtilis ATCC 6633, Escherichia coli NIHJ および E. coli KP. を用いた。

2) 検定用培地

市販培地の Heart Infusion(HI) agar(日水), DST agar (Oxoid), Tripticase soy(TS) agar(Difco)及び日抗基,一般試験法・力価試験法 I -2-(1)-①- i (ペプトン 6 g,

ブドウ糖 1 g, 酵母エキス 3 g, 肉エキス1.5 g, 寒天15 g, 以下, MRAPJ 培地と略す。但し, pH 8.5)を用いた。

3) 最小発育阻止濃度(MIC)測定法

日本化学療法学会標準法2)に準拠し行った。

4) 検定菌液の調製

普通寒天培地で継代した各検定菌を HI agar 平板に塗抹し、37℃で16~18時間培養後、発育した菌体を OD660 =0.8となるよう滅菌蒸留水に懸濁して検定菌液とした。 (このときの菌量は約10⁸⁻⁹ cfu/ml)。

5) 濃度測定法

(1)寒天平板法(Agar-well method)

検定菌液を接種した検定用培地 7 ml を直径90 mm の

Fig. 1 Chemical structure of RU 28965

O-CH₂-O-CH₂-CH₂-OCH₃

H₃C

OH

CH₃

OCH₃

シャーレに分注し、水平固化した。寒天平板の中心から 25 mm の円周上に等間隔になるよう外径 8 mm の孔をあけ、試料 50μ l を分注した。

(2)薄層 cup 法(Cylinder-plate, method)

Agar-well 法と同様に調製した寒天平板の中心から25 mm の円周上にステンレスカップ(外径 8 mm, 内径 6 mm, 高さ10 mm)を 4 つ置き、標準溶液及び試料液の250 μl を分注した。なお、両方法とも25℃、1 時間の予備拡散を行ったのち、34℃で18~20時間培養した。

6) 希釈液

1/15 M Phosphate buffer(pH 8.0), 20%アセトニトリル含有1/10 M Phosphate buffer(pH 8.0), ブールしたヒト血漿及びヒト尿を用いた。

7) 試料の前処理

血漿及び尿ともに Fig. 2 に従い AcOEt で抽出後,減 圧下乾固し,20% CH³ CN 含有1/10 M Phosphate buffer (pH 8.0)に溶解後,Bioassay に供した。

Ⅱ. 実験結果

1. 測定条件に関する検討

1) 検定菌

M. luteus ATCC 9341, B. subtilis ATCC 6633, E. coli NIHJ 及び E. coli KP. の4種類について MIC 値を測定したところ, M. luteus ATCC 9341及び B. subtilis ATCC 6633が優れていた(Table 1)。これら2種類の検定菌について RU 28965の0.1~50 µg/ml の濃度範囲における検量曲線を比較した結果,曲線勾配及び低濃度側での阻

Table 1 Antibacterial spectrum of RU 28965 106cfu/ml

MIC (μg/ml)
0. 2
0. 2
50
50

Fig. 2 Procedure for sample preparation

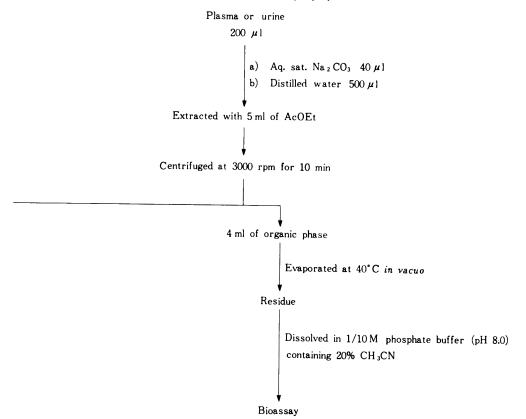


Fig. 3 Standard curves of RU 28965 in different organisms

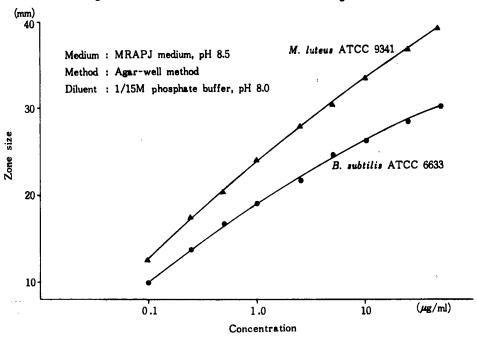


Fig. 4 Standard curves of RU 28965 in different media

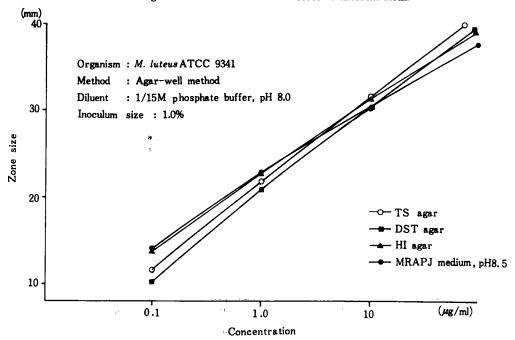


Fig. 5 Influence of inoculum size on standard curves of RU 28965

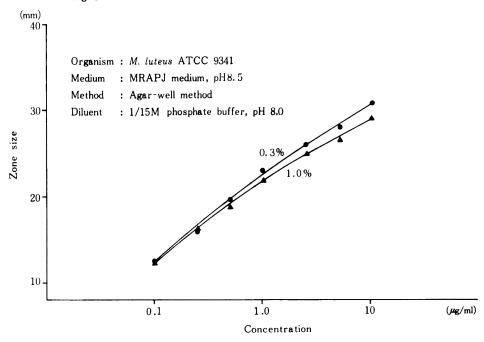


Fig. 6 Influence of different methods on standard curves of RU 28965

正円直径が最も優れていた M. luteus ATCC 9341を検定 菌として用いることにした(Fig. 3)。

2) 培地の検討

4 種類の培地について、RU 28965の Agar-well 法による検量曲線を比較すると HI agar(日水)および MRAPJ 培地(但し、pH 8.5)が優れていたが、より鮮明な阻止像を与える後者を用いることにした(Fig. 4)。

3) 接種菌量の影響

M. Intens ATCC 9341の菌液(10° cfu/ml)を0.3%又は1.0%濃度となるように MRAPJ 培地(但し, pH 8.5)へ接種し、Agar-well 法により検量曲線を作成した。

菌液の濃度が0.3%のとき、阻止円の直径は1.0%のと きと比較してやや大きくなったが、阻止円の境界が判別 しにくかったため菌液の濃度は1.0%とした(Fig. 5)。

2. 測定方法に関する検討

前項までに述べた結果より設定された基礎条件を用い、 Agar-well 法及び薄層 cup 法による検量曲線を作成,比較した。

Fig. 6 に示したように, 薄層 cup 法は Agar-well 法よりも低濃度側で大きな阻止円直径を与えることから, 前者を用いることにした。

3. 血漿および尿試料の前処理法に関する検討

1) 血漿試料

RU 28965は血漿タンパクと高い結合率を示すことが報告³⁾ されていることから、血漿中濃度を測定するためには、除タンパク操作を含めた前処理法が必要と考えられた。

ヒトプール血漿に RU 28965を0.1~1.0 μg/ml の濃度 となるように加え、作製した試料を Fig. 2 に従い処理 し回収率を算出したところ、いずれの濃度においても良 好な回収率が認められた(Table 2)。

Table 2 Recovery of RU 28965 from human plasma or urine

	Added	Found
	$(\mu g/ml)$	(μg/ml)
Plasma 0. 1 0. 25 1. 0 10. 0	0.1	0.10 ± 0.01
	0. 25	0.29 ± 0.02
	1.0	1.14 ± 0.14
	10.0	10.1 ± 0.89
Urine 50	10	10.4 ± 0.54
	50	53.3 ± 5.96
	100	98.3 ± 11.0

Mean \pm S.D. (n=5)

なお、本法による RU 28965の検出限界は $0.1\,\mu\mathrm{g/ml}$ であった。

2) 尿試料

ヒトプール駅に RU 28965を $10\sim100~\mu g/ml$ の濃度となるように加え、作製した試料を Fig. 2 に従い処理し回収率を算出したところ、血漿の場合と同様、回収率、検出限界ともに良好であった(Table 2)。

4. HPLC 法⁴⁾による測定値との相関性

前項までに述べた結果より、設定された測定条件を用いた Bioassay 法と HPLC 法とでの測定値の相関性を調べた。

血漿試料(n=144)の場合、Y=0.957X+0.116,尿試料(n=72)ではY=0.875X-0.412の一次回帰式が得られ、また、相関係数はそれぞれ0.985, 0.997と良好な相関性が認められた(Fig. 7)。

Ⅲ. 考察

RU 28965の体液中濃度を Bioassay 法により測定する にあたり、その測定条件に関して種々の検討を加えた。

その結果, RU 28965に対して高い感受性を示す M. luteus ATCC 9341を検定菌とし, MRAPJ 培地(但し, pH 8.5)を検定培地とする薄層 cup 法を選択した。

培養方法に関して25℃1時間の予備拡散が必要であったが、これは RU 28965の高い脂溶性により、培地への拡散が悪いためと考えられる。

血漿及び尿試料を煩雑な前処理なしに Bioassay 法へ供することができれば、多くの試料を測定する場合特に有利である。そこで、血漿について前処理せずに検量曲線を作成し、1/15 M Phosphate buffer (pH 8.0)の場合と比較したところ検出限界が低下し、後者の $1/20\sim1/10$ にあたる $0.5\sim1.0~\mu g/ml$ となった(Fig. 8)。 RU 28965は血漿タンパクと高い結合率を示すことが報告"されており、このことが検出限界を低下させる原因と考えられ、除タンパク操作を含めた試料の前処理が必要であった。そこで、有機溶媒による抽出法を試みたところ $0.1\sim10~\mu g/ml$ の濃度範囲で、RU 28965は濃度依存性がない良好な回収率を示し、更に、検出限界も著しく改善された $(0.1~\mu g/ml)$ 。また、尿試料の場合も同様、良好な回収率及び検出限界が得られた。

以上の結果より、著者らは RU 28965の体液内濃度測定方法として、下記に示した方法を設定した。

RU 28965体液内濃度測定法(微生物学的定量法)

1. 検定菌

Micrococcus luteus ATCC 9341

2. 検定用培地

日抗基, 一般試験法・力価試験法 I-2-(1)-①-iに記

載の培地(pH 8.5)

3. 検定菌液及び菌量

普通寒天培地で継代した検定菌を Heart Infusion agar 平板に塗抹し、37℃で16~18時間培養する操作を2回く り返して、発育した菌をOD600=0.8となるように滅菌蒸 留水に懸濁して検定菌液とする(この時の菌量は, 約 10⁸⁻⁹ cfu/ml)。

検定用培地への検定菌液の接種菌量は1%とする。

4. 検定方法

薄層 cup 法により行う。

Fig. 7 Correlation between bioassay and HPLC

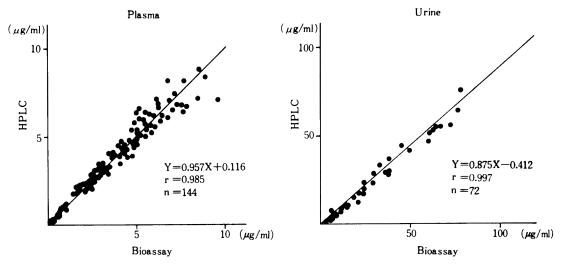
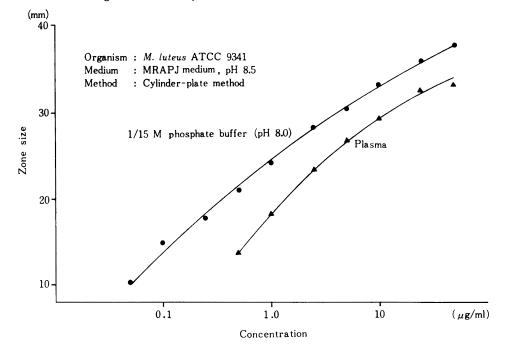



Fig. 8 Influence of plasma on standard curves of RU 28965

5. 標準希釈系列の作製

RU 28965の標準品をアセトニトリルに溶解して、 1000 µg(力価)/ml の標準原液を作製する。

標準希釈系列は標準原液を20% CH₃CN 含有1/10 M Phosphate buffer(pH 8.0) で希釈, 作製する。 濃度範囲 は0.025~10 μg/ml とする。

6. 試料の前処理

血漿、尿ともにアルカリ性下酢酸エチルで抽出し、有機層を減圧下乾固後、20% CH₃CN 含有1/10 M Phosphate buffer(pH 8.0)に再溶解する。

7. 培養条件

25℃, 1時間予備拡散を行ったのち,34℃で18~20時間培養する。

文 献

- 第35回日本化学療法学会総会,新薬シンポジウム IV。RU 28965, 盛岡, 1987
- 日本化学療法学会:最小発育阻止濃度(MIC)の測定法再改定について。Chemotherapy 29:76~79, 1981
- R. Zini and J. Barre: In vitro study of RU 28965 binding to human serum proteins and erythrocites. 社內資料
- 4) 城塚美喜雄、山本照雄、平山正史、斎藤健治、奥井 清: RU 28965の体液内濃度測定法に関する研究(Ⅱ)、HPLC 法による測定法検討。Chemotherapy 投稿中

MICROBIOLOGICAL ASSAY FOR RU 28965 IN BODY FLUIDS

TERUO YAMAMOTO, MIKIO SHIROTSUKA, HIDEYUKI SHIROISHI, KENJI SAITOH and KIYOSHI OKUI Nippon Roussel Laboratories

We established a bioassay method to determine plasma and urinary levels of RU 28965.

This is a cylinder-plate method using M. luteus ATCC 9341 as the test organism in a medium consisting of peptone 6 g, yeast extract 3 g, beef extract 1.5 g, glucose 1 g, agar 15 g and distilled water 1 liter at pH 8.5.

The detection limit for plasma and urinary concentrations of RU 28965 was as low as 0.1 µg/ml.

Though it was necessary to extract with AcOEt as pre-treatment of the plasma and urine samples, recovery was high and independent of the concentration.

Plasma and urinary levels of RU 28965, obtained from a study using healthy volunteers, were measured by this method and HPLC. No significant difference was found between these methods.