Tazobactam/Piperacillinのin vitro抗菌力

欅田千恵子・西田幸一・東谷房広・兵頭昭夫・石田直文・釆見憲男 大鵬薬品工業株式会社化学療法剤研究所*

大鵬薬品工業株式会社において新しく開発されたβ-lactamase阻害剤であるtazobactam (TAZ)とpenicillin系抗生物質のうち最も汎用されている富山化学工業株式会社のpiperacillin(PIPC)とを1:4に配合したtazobactam/piperacillin(TAZ/PIPC)についてin vitro抗菌力を既存の抗生物質PIPC, clavulanic acid/ticarcillin(CVA/TIPC), sulbactam/ampicillin(SBT/ABPC), cefoperazone (CPZ), sulbactam/cefoperazone (SBT/CPZ), cefotiam (CTM), ceftazidime (CAZ)と比較検討した。

Plasmid型β-lactamase産生株のうち、最も分離率の高いTEM1産生株に対してTAZ/PIPC の抗菌力はPIPCに比べ16~64倍の増強が見られ優れた抗菌力を示し、CVA/TIPC, SBT/ ABPCよりも優れ、SBT/CPZとほぼ同等であった。β-lactamaseを高度産生しているBacteroides属に対してはPIPCの抗菌力は弱かったが、TAZの添加により8~16倍抗菌力が増強し た。臨床分離株に対するTAZ/PIPCの10°CFU/ml接種時のMIC90(μg/ml)を小さい順に示し to Streptococcus pyogenes (0.10), Moraxella (Branhamella) catarrhalis (0.10), Proteus mirabilis (0.78), Proteus vulgaris (1.56), Enterococcus faecalis (3.13), Staphylococcus epidermidis $(6.25)\ ,\ \textit{Klebsiella pneumoniae} (6.25)\ ,\ \textit{Morganella morganii} (6.25)\ ,\ \textit{Escherichia coli} (12.5)\ ,\ \textit{Promotion of the preumoniae} (6.25)\ ,\ \textit{Colinear of the preumoniae} (6.25)\ ,\ \textit{Co$ videncia rettgeri (12.5), Pseudomonas aeruginosa (25), Staphylococcus aureus (50), Enterobacter aerogenes (50), Enterobacter cloacae (50), Serratia marcescens (50), Acinetobacter calcoaceticus (50) Citrobacter freundii (100)。 M. morganii, P. vulgaris, P. rettgeriに対して, PIPCと TAZの配合剤が使用した薬剤のうち最も優れていた。TAZ/PIPCの抗菌力は培地の種類, 培地pH, ウマ血清添加,接種菌量の影響はほとんど受けなかった。S. aureus 55, E. coli TEM1の増殖曲線に及ぼすTAZ/PIPCの影響はMIC以上の濃度で優れた殺菌効果を示した。 しかしPIPCではβ-lactamase産生のE. coli TEM1によりPIPCが分解され,殺菌効果が認め られなかった。S. aureus 209P JCおよびE. coli NIHJ JC-2のPBPsに対するTAZ/PIPCの親和 性はPIPCと同様にS. aureus 209P JCではPBP2, 3, 1の順に, E. coli NIHJ JC-2ではPBP3, 1A, 2の順に強い親和性を示した。TAZはPIPCが分解を受けるPCaseおよびBacteroides属, P. vulgarisの産生するCXaseおよびCEPaseに対し、阻害活性を有し、その結果TAZ/PIPC はPIPCより優れた抗菌力を示した。これらのことからTAZ/PIPCはβ-lactamase産生耐性菌 に対し治療上有用な薬剤となり,セフェム剤に匹敵するスペクトルを持つ配合剤となり得 るものと考えられた。

Key words: tazobactam/piperacillin, in vitro抗菌力, β-lactamase阻害剤

Tazobactam (TAZ) のpenicillinase に対する阻害活性は clavulanic acid (CVA) と同等で、cephalosporinase (CEPase) に対しては、CVA、sulbactam (SBT) よりも優れた阻害活性を有し、種々の β -lactam剤と相乗効果を示すことが報告されている 1^{-3})。 Tazobactam/piperacillin (TAZ/PIPC) は、このTAZと penicillin系抗生物質のうち最も汎用されている piperacillin (PIPC) とを 1:4 に配合した注射用抗生物質である。そこでTAZ/

PIPCの in vitro抗菌力について既知抗生物質である PIPC, clavulanic acid/ticarcillin (CVA/TIPC), sulbactam/ampicillin (SBT/ABPC), cefoperazone (CPZ), sulbactam/cefoperazone (SBT/CPZ), cefotiam (CTM) と比較検討した。

I. 実験材料および実験方法

1. 使用薬剤

TAZは当研究所で合成され, TAZ/PIPCはTAZと

^{*〒771-01} 徳島市川内町平石夷野224-2

PIPCの力価が1:4になるよう配合して用い、PIPC+2.5μg/ml TAZはPIPCの濃度に関係なくTAZを2.5μg/ml添加して使用した。その他の薬剤は市販品を使用した。内訳は次のとおりである。PIPC: American Cyanamid(米国)、CVA/TIPC: Beecham (英国)、SBT/ABPC: Pfizer (米国)、SBT/CPZ: ファイザー製薬、CPZ: 富山化学、CTM: 武田薬品、ceftazidime (CAZ): 田辺製薬。

2. 使用菌株

使用した菌株は当研究所保存の臨床分離株、嫌気性菌標準株およびLondon病院大学Dr. Williamsより分与を受けたβ-lactamase産生株を用いた。なお、臨床分離株の菌種および菌株数は、Staphylococcus aureus 54株、Staphylococcus epidermidis 54株、Streptococcus pyogenes 51株、Enterococcus faecalis 48株、Moraxella (Branhamella) catarrhalis 19株、Escherichia coli 54株、Klebsiella pneumoniae 54株、Serratia marcescens 54株、Enterobacter cloacae 54株、Enterbacter aerogenes 54株、Citrobacter freundii 54株、Proteus mirabilis 54株、Morganella morganii 54株、Proteus vulgaris 54株、Providencia rettgeri 54株、Pseudomonas aeruginosa 54株、Acinetobacter calcoaceticus 54株である。

3. 最小発育阻止濃度(MIC)の測定

前培養にMueller-Hinton broth (MHB: Difco) を,感受性測定用培地としてMueller-Hinton Agar (MHA: Difco) を用い日本化学療法学会の定める方法"に準じて、寒天平板希釈法により行った。但し、M. (B.) catarrhalis, S. pyogenesについてはHeart infusion broth (HIB: Difco) に10%ウマ血清(日本バイオテスト)を添加、37℃で一夜培養した菌液を前培養液とし、5%ウマ脱繊維血液(日本バイオテスト)添加Heart infusion agar (HIA: Difco) を用いて行い、37℃で20時間培養後のMICを判定した。嫌気性菌については前培養にGAMブイヨン(GAMB: 日水)を用い、測定にはGAM寒天培地(GAM: 日水)を用い、嫌気性菌のMIC測定法がに準じた。菌液の接種は10°および10° cfu/mlに調製した菌液をいずれもミクロプランター(佐久間製作所)にて行った。

4. β-lactamase産生株の確認

 β -lactamaseの有無についてはMHAで一夜培養した 菌体をnitrocefinディスク (cefinase: BBL) およびPCGディスク, CERディスク (セロテック: セロテック) に塗 抹しディスクが赤色または黄色に変化したものを陽性 とし、 β -lactamase産生株とした。

- 5. 抗菌力に及ぼす諸因子の影響
- 1) 培地の種類, 培地のpHおよび血清添加の影響

培地はMHA, Nutrient agar (NA: Difco), HIA, Brain heart infusion agar (BHIA: Difco), Trypticase soy agar (TSA: BBL)を使用した。培地pHの影響にはMHA (pH7.2)をHCIまたはNaOHを用い、pH 6, 7, 8になるよう調製した。血清添加の影響についてウマ血清の濃度が10, 25, 50%となるよう添加したHIAを用いた。接種菌量は10⁶, 10⁸ cfu/mlで行った。

2) 接種菌量の影響

培地としてMHAを用い、10⁶、10⁷、10⁶、10⁶、10⁶ to⁴ cfu/mlの菌液をミクロプランターで接種した。

6. 増殖曲線に及ぼす影響

各菌株を一夜培養後、MHBで増殖させた対数増殖期の菌に種々の濃度の薬剤を作用させ、以後経時的に4時間目までの生菌数を測定した。また培養液中のPIPCの残存濃度はMicrococcus Intens ATCC9341を検定菌としたBioassay法により測定した。

7. Penicillin binding proteins (PBPs) に対する親和性

Sprattの方法^{6,7}に準じた。即ちS. aureus 209P JCおよびE. coli NIHJ JC-2をHIB, 37℃で振盪培養し、対数増殖期に遠心分離にて集菌した。これを0.1Mリン酸緩衝液に懸濁後、超音波破砕し、 $100,000 \times g$ 45min 4℃にて膜画分を分離した。その後、20mg protein/mlに調製し、この膜画分とTAZ/PIPC、PIPC、TAZを加え30℃、10min反応させた後、 $[^{14}C]$ Penicillin $G(^{14}C-PCG)$ を加え、さらに10min反応を行った。その後、直ちに過剰のPCGと58 arkocylを加え、反応を停止させるとともに細胞質膜を可溶化した。これに51 DS溶液とメルカプトエタノールを加え、52 min煮沸後、51 DSポリアクリルアミドスラブゲル電気泳動法により分離し、フルオログラフィーにて検出した。

Ⅱ. 実験結果

- 1. 抗菌スペクトル
- 1) β-lactamase産生株に対する抗菌力

β-lactamase産生標準株に対するTAZ/PIPCの抗菌力をTable 1, 2に示した。TAZ/PIPCはPIPCに比べplasmid型β-lactamaseのうち最も分離率の高いTEM1産生株に対し10⁶, 10⁸cfu/ml接種においてPIPCに比べ8~128倍の抗菌力の増強が見られ優れた相乗効果を示し、その値はCVA/TIPC、SBT/ABPCよりも優れ、SBT/CPZとほぼ同等であった。TEM2、OXA、SHV産生株に対してはTAZ/PIPCはSBT/CPZおよびCPZに比べて劣るがPIPC、CVA/TIPC、SBT/ABPCより優れていた。P. aeruginosaのうちpenicillinase (PCase)のPSE3、4に対してTAZ/PIPCはSBT/CPZと同等であり、PIPCよりも抗菌力が強かった。

β-lactamase産生臨床分離株に対するTAZ/PIPCの抗菌力をTable 3、4に示した。TAZ/PIPCおよびPIPC+TAZ 2.5μg/mlは、PCase産生株に対しPIPC、CVA/TIPCより強く、SBT/CPZ、CTMとほぼ同等の抗菌力を示した。一方、腸内細菌科のCEPase産生株に対しても、TAZ/PIPCは、SBT/CPZと同等の抗菌力を示した。

CAZ耐性菌(MIC≥12.5µg/ml)に対するTAZ/PIPCの 抗菌力を、Table 5.6に示した。これらの株に対する TAZ/PIPCの抗菌力はSBT/CPZと同等であり、CAZよ り低いMIC値を示した。

2) 嫌気性菌に対する抗菌力

嫌気性菌に対するPIPCの抗菌力は優れていたが、 β -lactamaseを高度産生している Bacteroides属に対しMIC値が高く、PIPC耐性株 (MIC: \geq 50 μ g/ml) も存在した。TAZ/PIPCはこのような菌株に対しても比較的小さなMICを示した (Table 7, 8)。

2. 臨床分離株に対する抗菌力

17菌種 874株に対するTAZ/PIPCおよび対照薬の抗 菌力を測定しMIC₅₀, MIC₉₀をTable 9, 10に示した。

S.~aureusに対してTAZ/PIPCはSBT/ABPCより若干劣り,他の対照薬より優れていたが, 10^6 cfu/ml接種でのMIC $_{90}$ は50 μ g/mlを示した。S.~epidermidisに対しては, 10^6 cfu/ml接種においてTAZ/PIPCのMIC $_{90}$ は6.25 μ g/mlを示し,PIPC,CVA/TIPCより優れ,SBT/ABPC,CPZ,CTMとほぼ同等の抗菌力を示した。S.~pyogenesおよびE.~faecalisでは β -lactamaseを産生している株がなかったことより 10^6 , 10^8 cfu/mlではTAZ/PIPCの抗菌力はPIPCと同等であり,PIPCの優れた抗菌力を保持していた。 β -lactamase産生率の高いことが報告されているM.~(B.)~catarrhalisのに対するTAZ/PIPCの抗菌力は 10^6 cfu/ml接種において最も優れた抗菌力を示し, 10^8 cfu/ml接種においてSBT/ABPCと同等,PIPC,CPZ,CTMより $16\sim512$ 倍以上優れていた。

Table 1. Antibacterial activity of tazobactam/piperacillin against β -lactamase producing bacteria

	β-lactamase				MIC (μg/m	nl)			
Organism	type	PIPC	TAZ/PIPC	PIPC+2.5TAZ	CVA/TIPC	SBT/ABPC	SBT/CPZ	CPZ	СТМ
S. aureus 54K		12.5	1.56	0.39	3.13	1.56	3.13	3.13	1.56
S. aureus 80K		12.5	1.56	0.39	3.13	1.56	3.13	1.56	0.78
E. coli TEM1	TEM1	200	6.25	0.78	50	50	1.56	0.78	0.10
E. coli 60L	TEM1	400	6.25	1.56	50	50	3.13	6.25	0.20
E. coli 541L	TEM1	25	1.56	0.39	25	12.5	0.78	0.39	0.10
E. coli TEM2	TEM2	>400	50	100	100	400	12.5	100	0.78
E. coli 963L	TEM2	0.78	0.78	0.39	1.56	3.13	0.10	0.10	0.10
E. coli OXA1	OXA1	25	12.5	6.25	100	50	0.39	0.20	0.20
E. coli 1573E	OXA2	6.25	1.56	0.78	12.5	6.25	0.20	0.39	0.39
E. coli OXA3	OXA3	6.25	1.56	0.78	25	6.25	0.20	0.39	0.39
K. pneumoniae 366L	SHV1	200	12.5	3.13	50	50	6.25	12.5	0.39
K. pneumoniae 101L	TEM2	400	3.13	0.78	50	25	1.56	1.56	0.20
Enterobacter 212L	TEM1	>400	50	100	100	400	12.5	100	6.25
Enterobacter P99	CEPase	100	50	50	200	200	50	100	> 400
Citrobacter 2046E	CEPase	12.5	0.78	0.39	50	50	6.25	6.25	1.56
Citrobacter 648L	TEM1	100	3.13	3.13	25	12.5	0.20	0.20	0.20
Citrobacter 962L	TEM2	100	6.25	3.13	25	12.5	0.20	0.20	0.20
Serratia 200L	TEM1 + CEPase	50	3.13	0.39	50	100	3.13	3.13	100
Serratia 832L	TEM1 + CEPase	6.25	3.13	1.56	25	100	3.13	1.56	6.25
P. aeruginosa PSE1	PSE1	6.25	6.25	6.25	25	400	12.5	6.25	>400
P. aeruginosa PSE2	PSE2	100	50	50	100	>400	100	100	>400
P. aeruginosa PSE3	PSE3	100	25	25	50	400	25	25	> 400
P. aeruginosa PSE4	PSE4	200	50	50	100	400	25	50	>400
Acinetobacter 553L	TEM1	>400	25	12.5	100	50	50	200	200
Acinetobacter 450L	TEM1 + CEPase	>400	25	25	100	50	50	400	200
Acinetobacter 578L	TEM1 + CEPase	400	25	25	50	50	50	200	200

Medium: Mueller-Hinton agar (Difco), Inoculum size: 106 cfu/ml

PIPC: piperacillin, TAZ/PIPC: tazobactam/piperacillin, 2.5TAZ: 2.5 μg/ml tazobactam,

CVA/TIPC: clavulanic acid/ticarcillin, SBT/ABPC: sulbactam/ampicillin, SBT/CPZ: sulbactam/cefoperazone,

CPZ: cefoperazone, CTM: cefotiam

Table 2. Antibacterial activity of tazobactam/piperacillin against β -lactamase producing bacteria

Organism	β -lactamase	MIC (μg/ml)								
Organishi	type	PIPC	TAZ/PIPC	PIPC+2.5TAZ	CVA/TIPC	SBT/ABPC	SBT/CPZ	CPZ	CTM	
S. aureus 54K		>400	6.25	1.56	12.5	6.25	6.25	12.5	3.13	
S. aureus 80K		> 400	6.25	1.56	6.25	6.25	6.25	6.25	1.56	
E. coli TEM1	TEM1	> 400	12.5	3.13	50	100	6.25	400	1.56	
E. coli 60L	TEM1	>400	12.5	12.5	100	100	12.5	>400	12.5	
E. coli 541L	TEM1	>400	3.13	1.56	25	25	1.56	200	1.56	
E. coli TEM2	TEM2	>400	100	>400	200	400	50	>400	100	
E. coli 963L	TEM2	3.13	1.56	1.56	3.13	6.25	0.39	0.10		
E. coli OXA1	OXA1	200	25	50	200	100	1.56	1.56		
E. coli 1573E	OXA2	200	3.13	1.56	25	12.5	0.78	25	12.5	
E. coli OXA3	OXA3	100	3.13	1.56	50	12.5	0.78	3.13	6.25	
K. pneumoniae 366L	SHV1	>400	100	>400	100	400	50	>400	6.25	
K. pneumoniae 101L	TEM2	> 400	6.25	3.13	100	100	6.25	>400	6.25	
Enterobacter 212L	TEM1	>400	100	>400	200	>400	50	>400	>400	
Enterobacter P99	CEPase	400	100	200	400	400	100	>400	>400	
Citrobacter 2046E	CEPase	200	1.56	0.78	100	100	25	200	400	
Citrobacter 648L	TEM1	>400	12.5	6.25	25	12.5	0.78	0.78	0.78	
Citrobacter 962L	TEM2	>400	6.25	12.5	100	25	0.78	1.56	0.78	
Serratia 200L	TEM1 + CEPase	>400	6.25	12.5	100	200	12.5	>400	>400	
Serratia 832L	TEM1 + CEPase	100	6.25	6.25	50	>400	25	400	>400	
P. aeruginosa PSE1	PSE1	200	12.5	12.5	50	>400	25	100	>400	
P. aeruginosa PSE2	PSE2	>400	400	>400	>400	>400	400	>400	>400	
P. aeruginosa PSE3	PSE3	200	50	50	200	>400	25	100	>400	
P. aeruginosa PSE4	PSE4	>400	100	400	200	>400	50	400	>400	
Acinetobacter 553L	TEM1	>400	100	400	200	50	50	>400	>400	
Acinetobacter 450L	TEM1 + CEPase	>400	100	200	200	100	50	>400	>400	
Acinetobacter 578L	TEM1 + CEPase	>400	25	25	100	50	50	>400	>400	

Medium: Mueller-Hinton agar (Difco) Inoculum size: 10⁸ cfu/ml

Table 3. Antibacterial activity of tazobactam/piperacillin against β -lactamase producing clinical isolates

Organism	β -lactamase	MIC (μ g/ml)								
Organism	type	PIPC	TAZ/PIPC	PIPC+2.5TAZ	CVA/TIPC	SBT/ABPC	SBT/CPZ	CPZ	CTM	
S. aureus 1053	PCase	3.13	1.56	1.56	6.25	1.56	6.25	3.13	1.56	
S. epidermidis 2046	PCase	6.25	1.56	0.39	6.25	1.56	3.13	3.13		
M.(B.) catarrhalis No.	2 PCase	0.39	0.10	≦0.05	0.39	0.20	0.20	0.39		
E. coli 31028	PCase	25	3.13	1.56	25	25	1.56	0.78	0.39	
E. coli 31034	CEPase	3.13	3.13	1.56	6.25	25	0.39	0.20		
E. coli 31048	PCase + CEPase	50	1.56	1.56	25	25	1.56	0.78	0.20	
K. pneumoniae 32014	PCase	6.25	6.25	6.25	12.5	12.5	1.56	0.78	0.78	
P. mirabilis 34002	PCase	3.13	0.39	0.20	6.25	12.5	1.56	6.25	0.39	
P. vulgaris 35057	CXase	12.5	1.56	1.56	12.5	100	12.5	50	>400	
M. morganii 36011	CEPase	6.25	1.56	0.20	12.5	50	1.56	3.13	12.5	
P. rettgeri 37036	CEPase	100	6.25	3.13	25	100	25	12.5	25	
E. cloacae 40032	CEPase	50	12.5	12.5	100	100	25	25	>400	
S. marcescens 42028	PCase + CEPase	50	12.5	6.25	200	400	50	50	>400	
C. freundii 44022	CEPase	3.13	6.25	3.13	25	100	12.5	6.25	100	
P. aeruginosa 46043	CEPase	6.25	6.25	6.25	50	>400	12.5		>400	
A. calcoaceticus 53003	CEPase	1.56	0.78	≤0.05	0.78	0.78	0.78	3.13	6.25	

Medium: Mueller-Hinton agar (Difco), Inoculum size: 10⁶ cfu/ml

Table 4. Antibacterial activity of tazobactam/piperacillin against β -lactamase producing bacteria

- ·	β-lactamase	MIC (μg/ml)								
Organism	type	PIPC	TAZ/PIPC	PIPC + 2.5TAZ	CVA/TIPC	SBT/ABPC	SBT/CPZ	CPZ	СТМ	
S. aureus 1053	PCase	50	3.13	1.56	6.25	6.25	6.25	6.25	3.13	
S. epidermidis 2046	PCase	400	3.13	1.56	25	6.25	6.25	6.25	3.13	
M.(B.) catarrhalis										
No. 2	PCase	200	0.39	≤0.05	0.78	0.39	0.39	12.5	6.25	
E. coli 31028	PCase	>400	3.13	1.56	50	25	3.13	100	0.78	
E. coli 31034	CEPase	25	6.25	3.13	25	25	1.56	1.56	25	
E. coli 31048	PCase + CEPase	>400	3.13	1.56	50	25	3.13	400	3.13	
K. pneumoniae 32014	PCase	400	6.25	6.25	12.5	25	1.56	3.13	1.56	
P. mirabilis 34002	PCase	>400	0.78	0.39	12.5	25	3.13	> 400	3.13	
P. vulgaris 35057	CXase	400	3.13	1.56	25	100	25	400	>400	
M. morganii 36011	CEPase	>400	1.56	0.39	25	100	6.25	200	400	
P. rettgeri 37036	CEPase	>400	12.5	12.5	50	200	200	> 400	>400	
E. cloacae 40032	CEPase	>400	25	50	200	200	100	400	> 400	
S. marcescens 42028	PCase + CEPase	>400	25	50	400	400	100	> 400	> 400	
C. freundii 44022	CEPase	50	12.5	12.5	200	200	25	100	>400	
P. aeruginosa 46043	CEPase	200	12.5	25	100	>400	50	100	>400	
A. calcoaceticus 53003	CEPase	100	6.25	3.13	25	12.5	25	100	50	

Medium: Mueller-Hinton agar (Difco), Inoculum si

Inoculum size: 108 cfu/ml

Table 5. Antibacterial activity of tazobactam/piperacillin against ceftazidime resistant bacteria

0	β -lactamase		$MIC (\mu g/ml)$							
Organism	type	PIPC	TAZ/PIPC	CAZ	CVA/TIPC	SBT/ABPC	SBT/CPZ	CPZ	CTM	
E. cloacae E40002	CEPase	200	100	>400	400	400	50	50	>400	
E. cloacae E40005	CEPase	100	50	100	100	100	25	100	>400	
E. cloacae E40009	CEPase	100	50	100	100	100	25	100	>400	
M. morganii L36006	CEPase	200	12.5	50	25	50	6.25	100	200	
C. freundii L44009	CEPase	100	25	100	400	200	25	100	200	
C. freundii L44011	CEPase	12.5	6.25	25	400	100	6.25	12.5	100	
P. aeruginosa L46024	CEPase	50	12.5	50	100	200	25	50	>400	
F. indologenes L58003		6.25	3.13	200	100	50	12.5	50	200	

Medium: Mueller-Hinton agar (Difco)

Inoculum size: 106 cfu/ml

Table 6. Antibacterial activity of tazobactam/piperacillin against ceftazidime resistant bacteria

	β-lactamase	$MIC (\mu g/ml)$							
Organism	type	PIPC	TAZ/PIPC	CAZ	CVA/TIPC	SBT/ABPC	SBT/CPZ	CPZ	CTM
E. cloacae E40002	CEPase	>400	200	>400	400	>400	200	>400	>400
E. cloacae E40005	CEPase	400	50	200	200	200	50	400	> 400
E. cloacae E40009	CEPase	400	100	200	200	200	100	>400	> 400
M. morganii L36006	CEPase	> 400	25	100	25	100	6.25	400	> 400
C. freundii L44009	CEPase	400	50	400	400	200	50	>400	> 400
C. freundii L44011	CEPase	200	25	200	400	200	25	200	> 400
P. aeruginosa L46024	CEPase	>400	50	400	200	200	100	>400	> 400
F. indologenes L58003		6.25	6.25	200	100	50	12.5	50	200

Medium: Mueller-Hinton agar (Difco),

Inoculum size: 108 cfu/ml

Table 7. Antibacterial activity of tazobactam/piperacillin against anaerobic bacteria

_			MIC (μ	g/ml)		
Organism	TAZ/PIPC	PIPC	CVA/TIPC	SBT/CPZ	CTM	TAZ
Bifidobacterium adolescentis ATCC 15703	0.20	0.10	0.39	0.39	1.56	6.25
Clostridium perfringens GAI 0084	0.39	0.20	0.78	≤ 0.05	3.13	100
Clostridium perfringens GAI 0668	≤ 0.05	≤ 0.05	0.39	≤ 0.05	0.39	100
Clostridium innocum GAI 5472	0.78	0.78	6.25	6.25	50	100
Clostridium difficile GAI 0858	6.25	6.25	12.5	50	200	>400
Streptococcus constellatus ATCC 27823	0.39	0.39	3.13	1.56	3.13	100
Bacteroides fragilis GM7000	0.39	0.20	0.39	1.56	6.25	6.25
Bacteroides fragilis ATCC 25285	0.39	0.78	0.39	1.56	25	6.25
Bacteroides fragilis GAI 5524	0.39	0.78	0.39	1.56	25	6.25
Bacteroides fragilis R-1-2	0.78	1.56	0.78	3.13	200	6.25
Bacteroides fragilis R-1-23	0.78	1.56	0.78	3.13	200	12.5
Bacteroides fragilis V-240-2 (R)	1.56	6.25	1.56	3.13	200	3.13
Bacteroides fragilis V-288 (R)	1.56	6.25	0.39	1.56	200	6.25
Bacteroides thetaiotaomicron WAL 3304	6.25	6.25	1.56	12.5	200	25
Bacteroides ovatus GAI 5630	3.13	3.13	1.56	6.25	100	12.5
Fusobacterium nucleatum FN-1	≤ 0.05	≤0.05	≤ 0.05	0.10	0.10	6.25
Fusobacterium varium GAI 5566	6.25	6.25	1.56	12.5	25	400
Fusobacterium varium ATCC 8501	6.25	6.25	1.56	12.5	6.25	400
Veillonella parvula GAI 5602	0.78	1.56	0.78	1.56	0.39	12.5

Inoculum size: 10⁶ cfu/ml

Table 8. Antibacterial activity of tazobactam/piperacillin against anaerobic bacteria

_			MIC (μ	g/ml)		
Organism	TAZ/PIPC	PIPC	CVA/TIPC	SBT/CPZ	CTM	TAZ
Bifidobacterium adolescentis ATCC 15703	0.20	0.20	0.78	0.20	1.56	6.25
Clostridium perfringens GAI 0084	6.25	6.25	6.25	0.39	25	200
Clostridium perfringens GAI 0668	1.56	1.56	0.78	1.56	6.25	100
Clostridium innocum GAI 5472	0.78	0.78	6.25	6.25	50	100
Clostridium difficile GAI 0858	6.25	6.25	6.25	25	400	>400
Streptococcus constellatus ATCC 27823	0.39	0.78	3.13	0.78	3.13	100
Bacteroides fragilis GM7000	3.13	3.13	1.56	25	100	25
Bacteroides fragilis ATCC 25285	3.13	3.13	1.56	25	100	25
Bacteroides fragilis GAI 5524	6.25	3.13	1.56	25	100	25
Bacteroides fragilis R-1-2	6.25	12.5	3.13	25	400	25
Bacteroides fragilis R-1-23	6.25	12.5	3.13	50	400	100
Bacteroides fragilis V-240-2 (R)	25	400	25	100	>400	400
Bacteroides fragilis V-288 (R)	12.5	100	12.5	50	>400	100
Bacteroides thetaiotaomicron WAL 3304	25	25	3.13	25	400	50
Bacteroides ovatus GAI 5630	3.13	12.5	1.56	12.5	400	25
Fusobacterium nucleatum FN-1	≤ 0.05	≤ 0.05	0.39	0.10	0.20	6.25
Fusobacterium varium GAI 5566	6.25	6.25	6.25	100	>400	>400
Fusobacterium varium ATCC 8501	6.25	6.25	3.13	100	>400	>400
Veillonella parvula GAI 5602	1.56	1.56	0.78	1.56	0.39	12.5

Inoculum size: 108 cfu/ml

Table 9–1. Antibacterial activity of β -lactams against gram-positive and gram-negative clinical isolates (10 6 cfu/ml)

0				(10° ctu/m
Organism (No. of strains)	Drug	MIC_{50}	MIC_{90}	Range
S. aureus	TAZ/PIPC	3.13	50	0.78~100
(54)	PIPC	6.25	200	$0.78 \sim 400$
	PIPC+2.5TAZ	0.78	50	$0.20 \sim 100$
	CVA/TIPC	6.25	100	$1.56 \sim 400$
	SBT/ABPC	1.56	12.5	$0.39 \sim 25$
	SBT/CPZ	6.25	200	1.56~>400
	CPZ	3.13	>400	$0.78 \sim >400$
	CTM	1.56	200	$0.39 \sim >400$
S. epidermidis	TAZ/PIPC	0.78	6.25	$0.20 \sim 100$
(54)	PIPC	0.78	50	$0.20 \sim 200$
	PIPC + 2.5TAZ	0.39	3.13	$0.10 \sim 100$
	CVA/TIPC	3.13	25	$0.78 \sim 400$
	SBT/ABPC	0.39	6.25	$\leq 0.05 \sim 25$
	SBT/CPZ	1.56	6.25	$0.78 \sim 50$
			3.13	
	CPZ	1.56		$0.39 \sim 50$
	CTM	0.78	3.13	$0.39 \sim 12.5$
S. pyogenes	TAZ/PIPC	≦ 0.05	0.10	$\leq 0.05 \sim 0.10$
(51)	PIPC	≦0.05	≤ 0.05	$\leq 0.05 \sim 0.10$
	PIPC + 2.5TAZ	≦0.05	≦0.05	$\leq 0.05 \sim 0.10$
	CVA/TIPC	0.39	0.39	$0.20 \sim 0.39$
	SBT/ABPC	≦0.05	≦ 0.05	≦0.05
	SBT/CPZ	0.20	0.20	$0.10 \sim 0.20$
	CPZ	0.10	0.10	$\leq 0.05 \sim 0.10$
	CTM	≦0.05	≦0.05	≦0.05
	TAZ	50	100	$12.5 \sim 100$
E. faecalis	TAZ/PIPC	3.13	3.13	$1.56 \sim 6.25$
(48)	PIPC	1.56	3.13	$0.78 \sim 6.25$
	PIPC + 2.5TAZ	1.56	3.13	$0.78 \sim 6.25$
	CVA/TIPC	50	100	25~100
	SBT/ABPC	1.56	1.56	$0.78 \sim 3.13$
	SBT/CPZ	50	50	$12.5 \sim 100$
	CPZ	25	50	$6.25 \sim 50$
	СТМ	100	200	25~400
M.(B.) catarrhalis	TAZ/PIPC	≦0.05	0.10	$\leq 0.05 \sim 0.10$
(19)	PIPC	0.39	3.13	$\leq 0.05 \sim 3.13$
(20)	PIPC + 2.5TAZ	≤0.05	≤0.05	≤0.05
	CVA/TIPC	0.20	0.39	≤0.05~0.78
				
	SBT/ABPC	0.20	0.20	$\leq 0.05 \sim 0.20$
	SBT/CPZ	0.39	0.78	$0.20 \sim 0.78$
	CPZ	1.56	1.56	$0.20 \sim 3.13$
	CTM	3.13	3.13	$0.39 \sim 3.13$
	TAZ	6.25	6.25	$0.78 \sim 6.25$
E. coli	TAZ/PIPC	1.56	12.5	$0.39 \sim 12.5$
(54)	PIPC	1.56	100	$0.39 \sim >400$
(0.2)	PIPC + 2.5TAZ	1.56	3.13	$0.39 \sim 6.25$
	CVA/TIPC	3.13	50	$0.78 \sim 100$
	SBT/ABPC	6.25	50	1.56~100
	SBT/CPZ	0.78	6.25	$0.10 \sim 12.5$
	CPZ	0.20	6.25	$\leq 0.05 \sim 12.5$

Table 9–2. Antibacterial activity of β -lactams against gram-positive and gram-negative clinical isolates (10⁶ cfu/ml)

Organism (No. of strains)	Drug	MIC_{50}	MIC_{90}	Range
K. pneumoniae	TAZ/PIPC	3.13	6.25	1.56~100
(54)	PIPC	3.13	6.25	$1.56 \sim 400$
(01)	PIPC+2.5TAZ	1.56	3.13	$0.78 \sim 200$
	CVA/TIPC	6.25	12.5	$6.25 \sim 100$
	SBT/ABPC	6.25	12.5	$6.25 \sim 400$
	SBT/CPZ	0.39	1.56	$0.20 \sim 25$
	CPZ	0.20	0.78	$0.10 \sim 12.5$
	CTM	0.20	0.78	$0.20 \sim 3.13$
S. marcescens	TAZ/PIPC	25	50	$0.39 \sim 100$
(54)	PIPC	200	>400	$0.78 \sim > 400$
	PIPC + 2.5TAZ	50	400	$0.20 \sim > 400$
	CVA/TIPC	200	400	$3.13 \sim >400$
	SBT/ABPC	400	>400	$3.13 \sim > 400$
	SBT/CPZ	50	100	$0.78 \sim 400$
	CPZ	50 50	200	$0.78 \sim 400$ $0.39 \sim >400$
	CTM	>400	>400	$0.39 \sim >400$ $0.78 \sim >400$
E. cloacae	TAZ/PIPC	3.13	50	$0.78 \sim 100$
(54)	PIPC	3.13	100	$0.78 \sim > 400$
	PIPC + 2.5TAZ	1.56	50	$0.78 \sim > 400$
	CVA/TIPC	6.25	400	$0.78 \sim 400$
	SBT/ABPC	25	200	$6.25 \sim > 400$
	SBT/CPZ	1.56	50	$0.20 \sim 100$
	CPZ	0.78	100	$0.10 \sim 400$
	СТМ	12.5	>400	0.39~>400
E. aerogenes	TAZ/PIPC	25	50	1.56~100
	PIPC	25 25	100	$1.56 \sim 100$ $1.56 \sim >400$
(54)				
	PIPC + 2.5TAZ	25	50	$1.56 \sim 100$
	CVA/TIPC	100	200	$1.56 \sim 200$
	SBT/ABPC	50	100	$25 \sim 400$
	SBT/CPZ	6.25	25	$0.10 \sim 50$
	CPZ	6.25	50	$0.10 \sim 200$
	CTM	400	>400	$0.39 \sim > 400$
C. freundii	TAZ/PIPC	12.5	100	$0.78 \sim 100$
(54)	PIPC	12.5	>400	1.56~>400
(~ -/	PIPC+2.5TAZ	6.25	400	$0.20 \sim > 400$
	CVA/TIPC	100	400	$1.56 \sim 400$
	SBT/ABPC	100	400	$6.25 \sim >400$
		12.5		$0.25 \sim 2400$ $0.39 \sim 200$
	SBT/CPZ		100	
	CPZ	25	100	$0.20 \sim 400$
	CTM	100	400	$0.39 \sim > 400$
P. mirabilis	TAZ/PIPC	0.39	0.78	$0.10 \sim 0.78$
(53)	PIPC	0.39	0.78	$0.10 \sim 3.13$
	PIPC+2.5TAZ	0.39	0.78	$0.10 \sim 0.78$
	CVA/TIPC	0.78	0.78	$0.39 \sim 6.25$
	SBT/ABPC	1.56	3.13	$0.78 \sim 12.5$
	SBT/CPZ	1.56	3.13	0.78 - 12.5 $0.78 - 6.25$
	CPZ	0.78	1.56	$0.78 \sim 0.23$ $0.39 \sim 6.25$
	CTM	0.39	0.39	$0.10 \sim 0.78$

Table 9–3. Antibacterial activity of β -lactams against gram-positive and gram-negative clinical isolates (10⁶ cfu/ml)

Organism (No. of strains)	Drug	MIC_{50}	MIC_{90}	Range
M. morganii	TAZ/PIPC	0.78	6.25	0.20~50
(54)	PIPC	1.56	50	$0.20 \sim 400$
	PIPC + 2.5TAZ	0.39	0.78	$0.10 \sim 100$
	CVA/TIPC	3.13	200	$0.39 \sim > 400$
	SBT/ABPC	25	100	$3.13 \sim 400$
	SBT/CPZ	3.13	12.5	$0.78 \sim 100$
	CPZ	1.56	25	$0.39 \sim 100$
	CTM	1.56	100	$0.20 \sim > 400$
P. vulgaris	TAZ/PIPC	0.78	1.56	≤0.05~12.5
(54)	PIPC	0.78	25	$\leq 0.05 \sim 400$
, ,	PIPC + 2.5TAZ	0.78	1.56	$\leq 0.05 \sim 12.5$
	CVA/TIPC	1.56	12.5	$0.39 \sim 50$
	SBT/ABPC	12.5	50	$0.78 \sim 100$
	SBT/CPZ	1.56	6.25	$0.10 \sim 12.5$
	CPZ	1.56	50	≤0.05~200
	CTM	50	400	$0.39 \sim >400$
P. rettgeri	TAZ/PIPC	1.56	12.5	$0.20 \sim 50$
(54)	PIPC	3.13	200	$0.20 \sim 400$
, ,	PIPC + 2.5TAZ	0.78	12.5	$0.10 \sim 100$
	CVA/TIPC	12.5	50	$0.39 \sim 100$
	SBT/ABPC	50	200	$0.78 \sim 200$
	SBT/CPZ	3.13	25	$0.20 \sim 50$
	CPZ	3.13	25	$0.20 \sim 50$
	CTM	0.78	50	$0.10 \sim 200$
P. aeruginosa	TAZ/PIPC	3.13	25	$0.78 \sim 100$
(54)	PIPC	6.25	12.5	$0.78 \sim 400$
	PIPC + 2.5TAZ	3.13	12.5	$0.39 \sim 400$
	CVA/TIPC	25	100	$3.13 \sim 200$
	SBT/ABPC	400	>400	$100 \sim > 400$
	SBT/CPZ	6.25	50	$0.78 \sim 50$
	CPZ	6.25	25	$0.39 \sim 200$
	CTM	>400	>400	400 ~ > 400
A. calcoaceticus	TAZ/PIPC	12.5	50	$0.78 \sim 100$
(54)	PIPC	12.5	50	$0.78 \sim > 400$
	PIPC + 2.5TAZ	3.13	50	≤0.05~>400
	CVA/TIPC	12.5	25	$0.39 \sim 50$
	SBT/ABPC	3.13	12.5	$0.39 \sim 25$
	SBT/CPZ	3.13	12.5	$0.39 \sim 50$
	CPZ	50	200	3.13~>400
	CTM	100	200	$6.25 \sim >400$
	TAZ	6.25	25	$0.20 \sim 50$

Table 10–1. Antibacterial activity of β -lactams against gram-positive and gram-negative clinical isolates (10^8 cfu/ml)

				(10 ⁸ cfu/ml
Organism (No. of strains)	Drug	MIC_{50}	MIC_{90}	Range
S. aureus	TAZ/PIPC	6.25	100	1.56~200
(54)	PIPC	200	>400	$6.25 \sim > 400$
,	PIPC + 2.5TAZ	3.13	100	$0.78 \sim 400$
	CVA/TIPC	6.25	200	$3.13 \sim >400$
	SBT/ABPC	6.25	50	$0.78 \sim 50$
	SBT/CPZ	6.25	400	3.13~>400
	CPZ	6.25	>400	$1.56 \sim >400$
	CTM	3.13	>400	$0.78 \sim > 400$
S. epidermidis	TAZ/PIPC	3.13	25	0.20~200
(54)	PIPC	12.5	400	$0.20 \sim > 400$
(01)	PIPC + 2.5TAZ	0.78	12.5	$0.20 \sim 400$
	CVA/TIPC	6.25	100	$0.78 \sim >400$
	SBT/ABPC	3.13	12.5	$0.10 \sim 50$
	SBT/CPZ	3.13	12.5	$1.56 \sim 400$
	CPZ	3.13	12.5	$0.78 \sim 400$
	CTM	0.78	6.25	0.39 ~ 50
S. pyogenes	TAZ/PIPC	≤0.05	0.10	$\leq 0.05 \sim 0.10$
(51)	PIPC	≤ 0.05	≤0.05	$\leq 0.05 \sim 0.10$
	PIPC + 2.5TAZ	≤ 0.05	≤ 0.05	≦0.05
	CVA/TIPC	0.39	0.39	$0.20 \sim 0.39$
	SBT/ABPC	≤0.05	≤0.05	≦0.05
	SBT/CPZ	0.20	0.20	$0.10 \sim 0.20$
	CPZ	0.10	0.10	$\leq 0.05 \sim 0.10$
	CTM	≤0.05	≤0.05	$\leq 0.05 \sim 0.10$ $\leq 0.05 \sim 0.10$
	TAZ	50 50	100	$= 0.03 - 0.10$ $50 \sim 100$
E. faecalis	TAZ/PIPC	1.56	6.25	1.56 ~ 12.5
(48)	PIPC	3.13	3.13	$1.56 \sim 6.25$
(40)	PIPC + 2.5TAZ	1.56	3.13	$1.56 \sim 6.25$ $1.56 \sim 6.25$
	CVA/TIPC	50	100	25 ~ 100
	SBT/ABPC	1.56	1.56	$0.78 \sim 3.13$
	SBT/CPZ	50	100	$12.5 \sim 100$
	CPZ	25	50	$12.5 \sim 50$
	CTM	100	200	50 ~ 400
M.(B.) catarrhalis	TAZ/PIPC	0.39	0.78	$0.20 \sim 6.25$
(19)	PIPC	400	>400	$0.39 \sim > 400$
	PIPC + 2.5TAZ	≦0.05	≤0.05	≤ 0.05
	CVA/TIPC	0.78	1.56	$0.39 \sim 1.56$
	SBT/ABPC	0.39	0.78	$0.20 \sim 0.78$
	SBT/CPZ	0.78	0.78	$0.20 \sim 0.78$
	CPZ	25	25	$3.13 \sim 50$
	CTM	6.25	25	1.56~25
	TAZ	6.25	6.25	$0.78 \sim 12.5$
E. coli	TAZ/PIPC	1.56	25	0.78~25
E. con (54)	PIPC	3.13	>400	$0.78 \sim 23$ $0.78 \sim >400$
(04)				$0.78 \sim 2400$ $0.78 \sim 100$
	PIPC + 2.5TAZ	1.56	12.5	
	CVA/TIPC	6.25	100	$1.56 \sim 200$
	SBT/ABPC	6.25	100	1.56 ~ 400
	SBT/CPZ	0.78	12.5	0.10 ~ 25
	CPZ	0.39	>400	0.10 ~ > 400
	CTM	0.78	6.25	$0.10 \sim 25$

Table 10–2. Antibacterial activity of β -lactams against gram-positive and gram-negative clinical isolates (10⁸ cfu/ml)

				(10° cfu/ml)
Organism (No. of strains)	Drug	MIC_{50}	MIC_{90}	Range
K. pneumoniae	TAZ/PIPC	3.13	6.25	1.56~200
(54)	PIPC	200	>400	$6.25 \sim > 400$
•	PIPC + 2.5TAZ	3.13	6.25	$1.56 \sim > 400$
	CVA/TIPC	12.5	12.5	$6.25 \sim 200$
	SBT/ABPC	12.5	25	$6.25 \sim >400$
	SBT/CPZ	0.78	1.56	$0.39 \sim 100$
	CPZ	0.78	3.13	$0.20 \sim > 400$
	CTM	0.39	1.56	$0.20 \sim 6.25$
S. marcescens	TAZ/PIPC	100	200	1.56~>400
(54)	PIPC	>400	>400	$3.13 \sim > 400$
(+ -)	PIPC+2.5TAZ	200	>400	$0.78 \sim > 400$
	CVA/TIPC	400	>400	$3.13 \sim > 400$
	SBT/ABPC	>400	>400	$6.25 \sim > 400$
	SBT/CPZ	100	400	$1.56 \sim > 400$
	CPZ	>400	>400	6.25~>400
	CTM	>400	>400	$100 \sim > 400$
E. cloacae	TAZ/PIPC	12.5	100	1.56~200
	PIPC	25	>400	$1.56 \sim 200$ $1.56 \sim >400$
(54)	PIPC + 2.5TAZ	12.5	400	$1.56 \sim >400$
	CVA/TIPC	50	400	$1.56 \sim 2400$ $1.56 \sim 400$
	SBT/ABPC	100	200	$12.5 \sim >400$
	SBT/CPZ	6.25	100	0.39~200
	CPZ	12.5	>400	$0.20 \sim > 400$
	CTM	>400	>400	25~>400
E. aerogenes	TAZ/PIPC	50	100	$3.13 \sim 200$
(54)	PIPC	200	>400	$3.13 \sim >400$
• •	PIPC + 2.5TAZ	200	>400	$3.13 \sim > 400$
	CVA/TIPC	100	200	$3.13 \sim 400$
	SBT/ABPC	100	200	25~>400
	SBT/CPZ	25	50	$0.39 \sim 400$
	CPZ	400	>400	$0.39 \sim >400$
	CTM	>400	>400	200~>400
	CIM	>400	>400	
C. freundii	TAZ/PIPC	25	100	$0.78 \sim 200$
(54)	PIPC	200	>400	$1.56 \sim > 400$
	PIPC + 2.5TAZ	50	>400	$0.39 \sim > 400$
	CVA/TIPC	400	400	$3.13 \sim 400$
	SBT/ABPC	200	>400	$12.5 \sim >400$
	SBT/CPZ	25	200	$0.78 \sim 400$
	CPZ	200	>400	$0.78 \sim > 400$
	CTM	>400	>400	25~>400
P. mirabilis	TAZ/PIPC	0.78	0.78	$0.20 \sim 1.56$
(54)	PIPC	0.78	1.56	0.20~>400
(01)	PIPC + 2.5TAZ	0.78	1.56	$0.20 \sim 1.56$
	CVA/TIPC	1.56	1.56	$0.78 \sim 50$
	SBT/ABPC	3.13	12.5	$1.56 \sim >400$
			6.25	$1.30 \sim 2400$ $0.78 \sim 6.25$
	SBT/CPZ	3.13		
	CPZ	1.56 0.39	12.5	$0.78 \sim > 400$ $0.39 \sim 6.25$
	CTM	0.39	1.56	0.35~0.23

Table 10–3. Antibacterial activity of β -lactams against gram-positive and gram-negative clinical isolates (10⁸ cfu/ml)

Organism	D	MIC	MIC	D
(No. of strains)	Drug	MIC_{50}	MIC_{90}	Range
M. morganii	TAZ/PIPC	0.78	25	0.20~100
(54)	PIPC	3.13	>400	$0.39 \sim > 400$
	PIPC + 2.5TAZ	0.78	12.5	$0.20 \sim > 400$
	CVA/TIPC	25	200	$0.78 \sim > 400$
	SBT/ABPC	100	100	$12.5 \sim > 400$
	SBT/CPZ	6.25	25	$1.56 \sim 200$
	CPZ	12.5	400	$0.78 \sim > 400$
	CTM	>400	>400	50~>400
P. vulgaris	TAZ/PIPC	0.78	3.13	$0.20 \sim 25$
(54)	PIPC	6.25	>400	$0.39 \sim > 400$
` ,	PIPC + 2.5TAZ	0.78	1.56	≤0.05~100
	CVA/TIPC	6.25	25	$0.78 \sim 100$
	SBT/ABPC	25	50	$1.56 \sim 200$
	SBT/CPZ	3.13	12.5	$0.10 \sim 25$
	CPZ	6.25	>400	$0.39 \sim > 400$
	CTM	>400	>400	0.78~>400
P. rettgeri	TAZ/PIPC	3.13	25	0.20 ~ 50
(54)	PIPC	12.5	>400	$0.20 \sim > 400$
` ,	PIPC + 2.5TAZ	0.78	50	$0.20 \sim 400$
	CVA/TIPC	25	100	$0.78 \sim 200$
	SBT/ABPC	50	200	$0.78 \sim 200$
	SBT/CPZ	12.5	100	$0.39 \sim 200$
	CPZ	12.5	>400	$0.20 \sim > 400$
	CTM	400	>400	0.10~>400
P. aeruginosa	TAZ/PIPC	6.25	50	1.56~200
(54)	PIPC	6.25	50	$3.13 \sim > 400$
	PIPC + 2.5TAZ	6.25	25	$0.39 \sim > 400$
	CVA/TIPC	25	200	$12.5 \sim 400$
	SBT/ABPC	400	>400	$100 \sim > 400$
	SBT/CPZ	12.5	50	$1.56 \sim 100$
	CPZ	12.5	50	$3.13 \sim > 400$
	CTM	>400	>400	>400
A. calcoaceticus	TAZ/PIPC	12.5	200	0.78~>400
(54)	PIPC	100	>400	$3.13 \sim > 400$
	PIPC+2.5TAZ	12.5	>400	≤0.05~>400
	CVA/TIPC	25	100	$0.78 \sim 200$
	SBT/ABPC	6.25	50	$1.56 \sim 200$
•	SBT/CPZ	6.25	50	$0.78 \sim >400$
	CPZ	200	>400	$12.5 \sim > 400$
	CTM	400	>400	25~>400
	TAZ	12.5	50	$0.39 \sim >400$

E.~coliに対するTAZ/PIPCの抗菌力はPIPC、SBT/ABPC、CVA/TIPCよりMIC $_{90}$ で4倍優れ、SBT/CPZ、CPZより若干劣っていた。K.~pneumoniaeに対しては 10^{6} cfu/ml接種ではPIPC、CPZの抗菌力は強かったが $\beta-$ lactamaseの影響を受ける 10^{8} cfu/mlでは $4\sim64$ 倍の抗

菌力の減弱が見られた。しかしTAZ/PIPCでは 10^6 , 10^8 cfu/ml接種でMICにほとんど変動が認められず優れた抗菌力を示した。S. marcescensに対しては 10^6 , 10^8 cfu/ml接種ともにTAZ/PIPCの MIC_{90} が50, 200 μ g/mlと高い値を示したが, MIC_{50} , MIC_{90} , MIC rangeに

Table 11. Influence of medium on antibacterial activity

Organism	Inoculum size cfu/ml	Medium	PIPC	MIC (μg/ml) TAZ/PIPC	TAZ
		MHA	0.78	0.78	50
		NA	1.56	1.56	100
	1.7×10^{6}	HIA	1.56	1.56	50
		BHIA	1.56	1.56	100
S. aureus 209P JC		TSA	0.78	0.78	50
5. aureus 2091 JC		MHA	1.56	1.56	100
		NA	1.56	1.56	100
	1.7×10^{8}	HIA	1.56	1.56	100
		BHIA	1.56	1.56	100
		TSA	1.56	1.56	100
		MHA	1.56	3.13	>100
		NA	6.25	6.25	>100
	1.3×10^{6}	HIA	1.56	3.13	>100
		BHIA	3.13	3.13	>100
D (134444 10.0		TSA	3.13	3.13	>100
E. coli NIHJ JC-2		MHA	3.13	3.13	>100
		NA	6.25	12.5	>100
	1.3×10^{8}	HIA	3.13	3.13	>100
		BHIA	6.25	3.13	>100
		TSA	3.13	3.13	>100
		MHA	0.78	0.20	50
		NA	3.13	0.78	100
	1.5×10^{6}	HIA	1.56	0.39	100
	2.0	BHIA	1.56	0.39	100
		TSA	1.56	0.39	100
K. pneumoniae PCI602		MHA	25	0.39	100
		NA	12.5	1.56	100
	1.5×10^{8}	HIA	12.5	0.78	100
		BHIA	25	0.78	100
		TSA	25	0.78	100
	.,,,	МНА	3.13	6.25	>100
		NA	3.13	3.13	>100
	1.9×10^6	HIA	6.25	6.25	>100
		BHIA	3.13	6.25	>100
		TSA	3.13	3.13	>100
P. aeruginosa PA01		MHA	6.25	6.25	>100
		NA	12.5	12.5	>100
	1.9×10^{8}	HIA	6.25	12.5	>100
	1.3 ^ 10	BHIA	6.25	6.25	>100

MHA: Mueller-Hinton medium,

NA: Nutrient agar, HIA: Heart infusion agar,

BHIA: Brain heart infusion agar,

TSA: Trypticase soy agar

おいて使用した薬剤のうち最も小さい値を示した。E. cloacaeおよびE. aerogenesに対してはMIC90は50µg/ml であり、CTM、CVA/TIPC、SBT/ABPCより小さかっ た。C. freundiiに対してはCPZ, SBT/CPZと同じMIC90 (100ug/ml)を示し、CTM、CVA/TIPC、SBT/ABPCの 1/4~1/8の値を示した。Proteus mirabilisに対しては TAZ/PIPCは他剤と同様に優れた抗菌力を示し, 10⁸cfu/ml接種でも, 1.56μg/ml以下で全ての菌株の発 育を阻止した。M. morganii, P. vulgarisおよびP. rettgeriに対してTAZ/PIPCおよびPIPC+ TAZ 2.5µg/ml のMIC90は最も小さく、TAZ/PIPCの場合は各々6.25、 1.56, 12.5µg/mlであり、PIPC+TAZ 2.5µg/mlの場合 は各々0.78, 1.56, 12.5µg/mlを示し、PIPCのMIC90 の1/8~1/64の小さい値であった。P. aeruginosaに対 して, TAZ/PIPCはPIPC, CPZ, SBT/CPZと同等の優 れた抗菌力を示し、PIPCにTAZを添加することによ る拮抗現象は認められなかった。A. calcoaceticusに対 して10⁶cfu/ml接種時のTAZ/PIPCのMIC₉₀(50µg/ml)

はSBT/ABPC、SBT/CPZより4倍大きく、CPZ、CTMの1/4倍の値を示した。またTAZ単独でも抗菌力 (MIC $_{90}$:25 μ g/ml)を示し、これはSBT、CVAで報告されているのと同じ現象と考えられた 7,8 。

- 3. 抗菌力に及ぼす諸因子の影響
- 1) 培地の種類による影響

使用した4菌種に対しTAZ/PIPC, PIPC, TAZの抗菌力は培地間においてほとんど変動は認められなかった。(Table 11)。

2) 培地のpHの影響

TAZ/PIPCおよびPIPCはS.~aureusに対し、酸性側においてMICが小さくなる傾向があり、 $\beta.$ lactam剤で一般に見られる現象 10 が確認された。他の菌株についてはTAZ/PIPC, PIPC, TAZいずれもMICの変動はほとんどなかった(Table 12)。

3) ウマ血清添加の影響

培地に馬血清を添加してもTAZ/PIPCのMIC変動は 4倍以内であり、ほとんど影響はなかった(Table 13)。

MIC (ua/ml)

Organism Inoculum size pH of Organism refum PIPC

0	Inoculum size	pH of		MIC (μg/ml)		
Organism	cfu/ml	medium	PIPC	TAZ/PIPC	TAZ	
		6	0.39	0.39	50	
	1.7×10^{6}	7	0.78	0.78	50	
		8	1.56	1.56	50	
S. aureus 209P JC		6	0.78	0.78	50	
	1.7×10^{8}	7	1.56	1.56	100	
		8	1.56	1.56	100	
		6	3.13	3.13	>100	
	1.3×10^{6}	7	1.56	3.13	>100	
		8	1.56	1.56	>100	
E. coli NIHJ JC-2		6	3.13	6.25	>100	
	1.3×10^{8}	7	3.13	3.13	>100	
		8	1.56	1.56	>100	
		6	1.56	0.39	50	
	1.5×10^{6}	7	0.78	0.20	50	
		8	1.56	0.20	100	
K. pneumoniae PCI602		6	50	1.56	100	
	1.5×10^{8}	7	25	0.39	100	
		8	25	0.20	100	
		6	1.56	3.13	>100	
	1.9×10^{6}	7	3.13	6.25	>100	
		8	3.13	6.25	>100	
P. aeruginosa PA01		6	6.25	12.5	>100	00 00 00
	1.9×10^{8}	7	6.25	6.25	>100	
		8	6.25	12.5	>100	

Table 12. Influence of medium pH on antibacterial activity

Medium: Mueller-Hinton medium

4) 接種菌量の影響

K. pneumoniaeにおいてPIPCは接種菌量の増加とともにMICの上昇が認められ、菌量の影響を受けやすい薬剤であったが、TAZ/PIPCはほとんどMICに変化がなく、TAZ配合により接種菌量の影響を受けにくい薬剤となった。他の菌株に対しては3剤ともほとんどMICの上昇は認められなかった(Table 14)。

4. 増殖曲線に及ぼす影響

1) S. aureus 55に対する殺菌力

PCase産生のS. aureus 55を用い、TAZ/PIPCとPIPC の殺菌力を検討したところ、Fig. 1に示すようにTAZ を添加することによりPIPCの殺菌力が増強された。

2) E. coli TEM1に対する殺菌力

臨床において分離率の最も高いTEM1型PCase産生株の $E.\ coli$ TEM1に対し、TAZ/PIPCは $12.5\mu g/ml$ (2MIC)以上の濃度でFig. 2に示すように優れた殺菌効果を示した。一方、PIPCはMICが高く、 $200\mu g/ml$ 以上の濃度で 4時間後まで菌の増殖を抑制したものの $100\mu g/ml$ 以下では2時間目より再増殖が認められた。また、PIPCの同じ濃度にTAZを添加した時の殺菌効果をPIPCと比較したところ、PIPC単独では菌数の減少が認められないのに対し、TAZを $2.5\sim5.0\mu g/ml$ 添加することにより速やかな菌数の減少が認められた。しかもこの時の培養液中のPIPC残存濃度をBioassy法

Table 13. Influence of serum concentration on antibacterial activity

Organism	Inoculum size cfu/ml	Concentration of horse serum (%)	PIPC	MIC (μg/ml) TAZ/PIPC	TAZ
		0	0.78	1.56	50
	2.9×10^6	10	0.78	1.56	50
	2.9 × 10	25	1.56	1.56	50
C COOD IC		50	1.56	1.56	50
S. aureus 209P JC		0	0.78	1.56	50
	0.0108	10	1.56	1.56	50
	2.9×10^{8}	25	1.56	3.13	50
		50	1.56	3.13	50
		0	1.56	1.56	>100
	6.8×10^{5}	10	1.56	1.56	>100
	0.0 × 10	25	1.56	1.56	>100
E and MILLIC 9		50	0.78	0.78	>100
E. coli NIHJ JC-2		0	3.13	3.13	>100
	6.8×10^{7}	10	3.13	3.13	>100 >100 >100 >100 >100 >100 >100 >100
	6.8 × 10°	25	1.56	3.13	>100
		50	1.56	1.56	>100
		0	0.78	0.39	50
	1.2×10^6	10	0.78	0.20	100
	1.2 × 10	25	0.78	0.20	100
V American DCICOO		50	0.78	0.10	100
K. pneumoniae PCI602		0	100	0.39	100
	1.2×10^{8}	10	100	0.39	100
	1.2 × 10	25	50	0.20	100
		50	12.5	0.10	100
		0	3.13	6.25	>100
	1.7×10^6	10	3.13	3.13	>100
	1.7 × 10	25	3.13	3.13	>100
D. gamaginaag DA01		50	6.25	6.25	>100
P. aeruginosa PA01		0	6.25	6.25	>100
	1.7×10^{8}	10	6.25	6.25	>100
	1.7 × 10	25	6.25	6.25	>100
		50	12.5	12.5	>100

Medium: Heart infusion agar (Difco)

で測定したところPIPC単独では2時間後にPIPCが消失していたのに対し、TAZを $5\mu g/ml$ 添加した場合、4時間培養後においてもPIPCが約90%残存していた(Fig. 3)。このことから $E.\ coli\ TEM1$ が産生するPCaseによってPIPCが2時間程度で分解されたため、PIPCは殺菌

力を示すことができなくなったと考えられる。

5. PBPsに対する親和性

S. aureus 209P JCおよびE. coli NIHJ JC-2のPBPsに対するTAZ/PIPC, PIPC, TAZの親和性を測定したところ, TAZ/PIPCはPIPCと同様S. aureus 209P JCでは

Table 14. Influence of inoculum size on antibacterial activity

Organism	Inoculum size cfu/ml	PIPC	MIC (μg/ml) TAZ/PIPC	TAZ
	Ciu/iiii			1712
S. aureus 209P JC	1.7×10^{8}	1.56	1.56	100
	1.7×10^{7}	0.78	1.56	50
	1.7×10^{6}	0.78	0.78	50
	1.7×10^{5}	0.78	0.78	50
	1.7×10^4	0.78	0.78	50
E. coli NIHJ JC-2	1.3×10^{8}	3.13	3.13	>100
	1.3×10^{7}	1.56	3.13	>100
	1.3×10^{6}	1.56	3.13	>100
	1.3×10^{5}	1.56	1.56	>100
	1.3×10^4	1.56	1.56	100
K. pneumoniae PCI602	1.5×10^{8}	25	0.39	100
	1.5×10^{7}	1.56	0.20	50
	1.5×10^{6}	0.78	0.20	50
	1.5×10^{5}	0.39	0.20	50
	1.5×10^4	0.39	0.20	25
P. aeruginosa PA01	1.9 × 10 ⁸	6.25	6.25	>100
	1.9×10^{7}	3.13	6.25	>100
	1.9×10^{6}	3.13	6.25	>100
	1.9×10^{5}	3.13	3.13	>100
	1.9×10^{4}	3.13	3.13	>100

Medium: Mueller-Hinton medium (Difco)

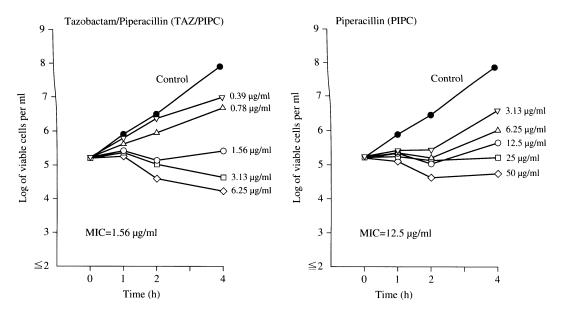


Fig. 1. Effect of tazobactam/piperacillin and piperacillin on viability of Staphylococcus aureus 55.

PBP2, 3, 1の順に, E. coli NIHJ JC-2ではPBP3, 1A, 2の順に強い親和性を示した(Fig. 4, 5)。TAZはS. aureus 209P JCのPBP4, 2に, E. coli NIHJ JC-2のPBP2に親和性を示すもののTAZ/PIPCおよびPIPCに比べ弱かった。

Ⅲ. 考 簝

TAZはPIPCが分解を受けるPCaseおよびBacteroides 属、P. vulgarisの産生するoxyiminocephalosporinaseおよびCEPase産生株に対し、優れた阻害活性を示し、これらの β -lactamase産生株に対してPIPCとの間で優

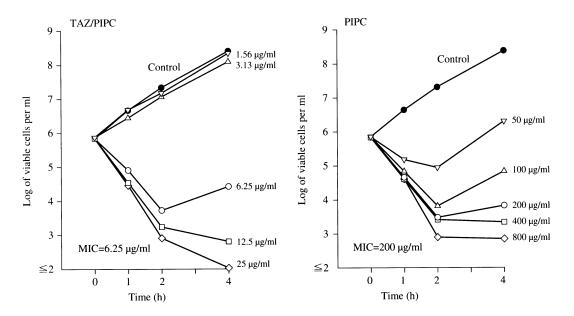


Fig. 2. Effect of tazobactam/piperacillin and piperacillin on viability of Escherichia coli TEM1.

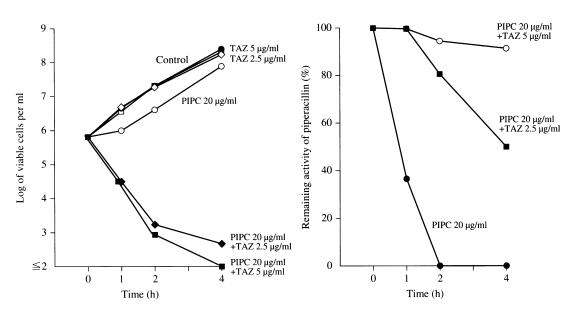
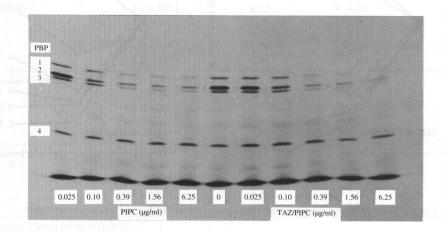
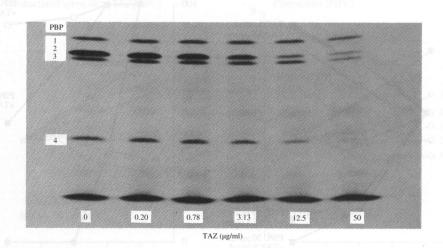
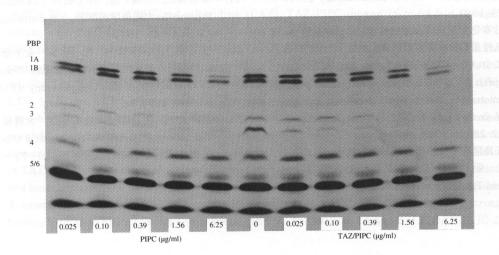



Fig. 3. Bactericidal activity and stability of piperacillin with/without tazobactam against Escherichia coli TEM1.

れた相乗効果を発揮した。Higashitani², Kitzis³らは TAZがPCaseに対してCVAと同等の阻害活性を示し、CVAが阻害できないCEPaseに対してはSBTと同等以上の阻害作用を示したと報告している。PIPCは10年来臨床で使用された優れた抗生物質であるが、近年数多く開発された第3セフェム剤に比べ、S. aureusからP. aeruginosaまでの幅広い抗菌スペクトルを有するもののPCase産生のE. coli, K. pneumoniae, S. aureusに対しては十分な抗菌力を示すことができない株が多かった。一方、E. cloacae, S. marcescens, C. freundiiなどは染色体上にCEPase遺伝子を持つため第3世代セフェム剤に対して耐性を示す株が多く、TAZ/PIPCの抗菌力

も十分でない株が比較的多かった。TAZ/PIPCはTAZ が強いPCase, CEPase阻害活性を有するため、PIPCの 抗菌力が不十分な β -lactamase産生E. coli, S. aureus, S. epidermidisに対し、優れた相乗効果を示した。また第 3世代セフェム剤であるCPZが十分な抗菌力を示さないM. morganii, P. vulgarisに対しTAZ/PIPCは使用した対照薬の中で最も強い抗菌力を示した。また,TAZ/PIPCが優れた抗菌力を示す菌種に対してはPIPC+TAZ $2.5\mu g/m l$ がTAZ/PIPCより強い抗菌力を示し、TAZ $2.5\mu g/m l$ で十分なPIPCとの相乗効果が認められた。しかし,TAZ/PIPCの抗菌力が不十分な菌種に対してはPIPC+TAZ $2.5\mu g/m l$ の抗菌力は弱く多量の




Fig. 4. Competition of tazobactam/piperacillin, piperacillin and tazobactam for penicillin binding proteins (PBPs) of *Staphylococcus aureus* 209P JC.

TAZが必要と考えられる。東谷 11)、三宅 12)、西野 13)らはTAZ/PIPCがPCase、CEPase産生株に対し 12 1ので優れた感染治療効果を示したと報告 $^{11-13}$ 1しており、TAZ/PIPCの 12 1のにが抗菌力は 12 1のに反映されていると考えられた。また、TAZ/PIPCの殺菌力はPIPCに比べて強く、 12 1のことができなかったのは薬剤作用2時間後にPIPCが培養液中で分解・消失することよりPIPC本来の殺菌力を示さなかったことが明らかになった。以上のことからTAZ/PIPCはPIPC本来の抗菌力をTAZを添加することにより復活させ、第3世代セフ

ェム剤なみの幅広い抗菌スペクトルを獲得させたと考えられる。以上よりTAZ/PIPCは β -lactamase産生菌による感染症の治療に有用な薬剤と考えられた。

Astronom **域** mother 25 文 7 - string 890

- 1) Gutmann L, Kitzis M D, Yamabe D, Acar J F: Comparative evaluation of a new β -lactamase inhibitor, YTR-830, combined with different β -lactam antibiotics against bacteria harboring known β -lactamase. Antimicrob Agents Chemother 29: 966~567, 1986
- 2) Higashitani F, Hyodo A, Ishida N, Inoue M, Mit-

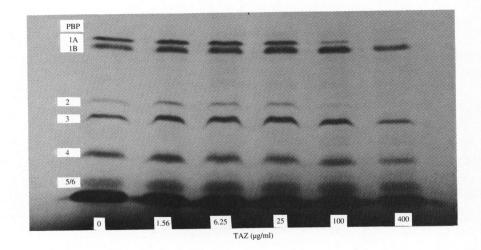


Fig. 5. Competition of tazobactam/piperacillin, piperacillin and tazobactam for penicillin binding proteins (PBPs) of *Escherichia coli* NIHJ JC-2.

- suhashi S: Inhibition of β -lactamases by tazobactam and *in vitro* antibacterial activity of tazobactam combination with piperacillin. J Antimicrob Chemother 25: 567~574, 1990
- 3) Kitzis M D, Billot-Klein D, Goldstein F W, Williamson R, Tran van Nhieu G, Carlet J, Acar J F, Gutmann L: Dissemination of the novel plasmid-mediated β-lactamase CTX-1, which confers resistance to broad-spectrum cephalosporins, and its inhibitors. Antimicrob Agent Chemother 32: 9~14, 1988
- 4) 日本化学療法学会: 最小発育阻止濃度 (MIC)測 定法再改訂について。Chemotherapy 29: 76~ 79, 1981
- 5) 日本化学療法学会嫌気性菌MIC測定委員会:嫌 気性菌の最小発育阻止濃度(MIC)測定法再改訂 について。Chemotherapy 27: 559~560, 1979
- 6) Spratt B G: Distinct penicillin binding proteins involved in the division, elongation and shape of *Escherichia coli* K-12, Pro Nat Acad Sci USA 72: 2999~3003, 1975
- 7) 五島瑳智子,小川正俊,金子康子,宮崎修一, 辻 明良,桑原章吾:BRL28500 (Clavulanic acid-Ticarcillin)の抗菌作用。Chemotherapy 34

- $(S-4): 30\sim43, 1986$
- 8) 横田 健, 東 映子, 鈴木映子: Sulbactamと Cefoperazone合剤の各種細菌臨床分離株に対す る抗菌力。 Chemotherapy 32 (S-4): 1 ~ 10, 1984
- 9) 永武 毅, 力富直人, Mbaki Nsiala, 渡辺貴和雄, 松本慶蔵:ブランハメラ・カタラーリスー呼 吸器感染症における症例の急増を中心にー。 化学療法の領域 2: 243~249, 1986
- 10) 西野武志, 羽原千恵子, 大槻雅子, 谷野輝雄 : Cefodizimeのin vitroおよびin vivo抗菌作用。 Chemotherapy 36(S-5): 95~116, 1988
- 11) 東谷房広, 三橋 進, 井上松久: Tazobactam/ Piperacillinの細菌学的評価。Chemotherapy 42 (S-2): 1~25, 1994
- 12) 三宅美行, 宮崎修一, 辻 明良, 金子康子, 山口惠三, 五島瑳智子:Tazobactam/Piperacillinの細菌学的評価。Chemotherapy 42 (S-2): 34~50, 1994
- 13) 西野武志, 西田幸一, 香本晃良, 大槻雅子: Tazobactam/Piperacillinのin vitroおよびin vivo 抗菌作用。Chemotherapy 42(S-2): 73~101. 1994

In vitro activity of tazobactam/piperacillin, a new β -lactamase inhibitor combined with a penicillin

Chieko Kunugita, Kouichi Nishida, Fusahiro Higashitani, Akio Hyodo, Naobumi Ishida and Norio Unemi

Anticancer & Antimicrobial Research Lab., Taiho Pharmaceutical Co. Ltd. 224-2 Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-01, Japan

Tazobactam (TAZ) is a novel β -lactamase inhibitor. Tazobactam/piperacillin (TAZ/PIPC) was evaluated for its antimicrobial activity in comparison with clavulanic acid/ticarcillin (CVA/ TIPC), sulbactam/ampicillin (SBT/ABPC), cefoperazone (CPZ), sulbacatam/cefoperazone (SBT/CPZ), cefotiam (CTM) and ceftazidime (CAZ). TAZ/PIPC showed 16-to 64-fold stronger activity than PIPC against TEM1 eta-lactamase-producing oraganisms, and the MIC of TAZ/PIPC was smaller than those of CVA/TIPC and SBT/ABPC, and similar to that of SBT/CPZ. PIPC had poor activity against highly β-lactamase-producing Bacteroides spp., but TAZ/PIPC had potent activity. The MIC₉₀s of TAZ/PIPC were 50, 6.25, 0.10, 12.5, 6.25, 50, 0.78, 25, 50, 50, 50, 100, 6.25, 1.56, and 12.5 μg/ml against Staphylococcus aureus, Staphylococcus epidermidis, Moraxella (Branhamella) catarrhalis, Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus mirabilis, Pseudomonas aeruginosa, Acinetobacter calcoaceticus, Serratia marcescens, Enterobacter cloacae, Citrobacter freundii, Morganella morganii, Proteus vulgaris, and Providencia rettgeri. The MIC of TAZ/PIPC was not changed under different conditions of the medium, pH, serum concentration and inoculum size. The bactericidal activity of TAZ/PIPC was stronger than that of PIPC against S. aureus 55 and E. coli TEM1 at concentations higher than 1 MIC. TAZ/PIPC showed a strong binding affinity to PBPs 2, 3 and 1 of S. aureus 209P JC, and PBPs 3, 1 A and 2 of E. coli NIHJ JC-2.