呼吸器感染症に対するgatifloxacinの後期第二期相臨床試験

斎藤 聡*1・大渡光秀*2・荒川正昭*3・和田光一*3・塚田弘樹*3・岩田文英*3・星野重幸*3・
関根 理*4・鈴木康稔*5・大石 明*5・林 泉*6・室戸和美*7・渡辺 尚*7・小田切繁樹*8・
鈴木周雄*8・高橋健一*8・古池保雄*9・平居義裕*9・佐藤篤彦*9・千田金吾*9・谷口正実*9・
下方 薫*10・一山 智*10・戸谷康信*10・村松孝直*10・今泉和良*10・大野城二*10・成田亘啓*11・
三笠理一*11・望月吉郎*12・中原保治*12・河村哲治*12・副島林雄*12・沖本二郎*12・二木芳人*13・
大泉耕太郎*14・白石恒明*14・松本慶啓*15・大石和徳*15・吉嶋裕之*15・真崎宏則*15・隆杉正和*15・
鬼塚正三郎*15・那須 勝*16・山崎 信*16・斎藤 厚*17・稲留 潤*17・普久原 浩*17

1 東京慈恵会医科大学附属柏病院総合内科
2 札幌総合病院呼吸器科
3 新潟大学医学部第二内科および関連施設
4 水戸県病院内科
5 国立壱ケ浦病院内科
6 財団法人病研究会附属病院内科
7 国立療養所東京病院呼吸器科
8 神奈川県立循環器病研究センター呼吸器科
9 浜松医科大学第二内科および関連施設
10 名古屋大学医学部第一内科および関連施設
11 奈良県立医科大学第二内科
12 国立姫路病院内科
13 川崎医科大学呼吸器内科
14 久留米大学医学部第一内科
15 長崎大学熱帯病医学研究所熱病内科および関連施設
16 大分医科大学第二内科
17 琉球大学医学部第一内科

* 治験総括医師（論文執筆者） ；代表世話人

新しく開発された新規フルオロキノロン系抗菌薬gatifloxacin（GFLX）の呼吸器感染症に対する有効性、安全性、有用性および体内動態を検討した。投与量は本薬剤1回100mg、150mg、200mgを、1日1回または2回投与とし、投与期間は、急性気管支炎は最少7日間とし、慢性気管支炎症と肺炎は最少14日間投与とした。

1）臨床効果
臨床効果の解析対象症例は87例で、その内訳は「著効」14例、「有効」66例、「やや有効」2例および「無効」5例で、有効率は92.0%（80/87）であった。

2）細菌学的効果
細菌学的効果の解析対象症例は34例で、その内訳は「陰性」31例、「一部消失または減少」1例、「不変」2例で、細菌陰性化率は91.2%（31/34）であった。

3）安全性
副作用の解析対象症例は97例で、副作用発現率は6.2%（6/97）であった。臨床検査
日本化学療法学会雑誌 SEP. 1999

価異常の解析対象症例は84例で、臨床検査値異常発現率は11.9％（10/84）であった。

4）有用性
有用性の解析対象症例は89例で、有用率は84.3％（75/89）であった。

5）体内動態
喀痰中濃度は本薬剤200mgを1日2回投与した結果、投与日後および投与5日後の第1回目の投与後で2.83～6.94 μg/mLを示し、対血清比は1.60および2.38であった。

以上の結果から、GFLXは高い臨床効果と強い抗菌力および良好な組織移行性が認められ、呼吸器感染症に対して投与量が1回100～200mgで1日2回投与した場合、有用かつ満足できるものと考えられた。

Key words：フルオロキノロン、GFLX、後期第II相臨床試験、呼吸器感染症、体内動態

GFLXは、杏林製薬株式会社で開発された抗潰瘍薬抗酸薬であり、グラム陽性菌からグラム陰性菌、嫌気性菌、抗酸菌、さらにはレジオネラ属、マイオプラズム、クラミジア属まで及ぶ広範な抗菌スペクトラムを有する強力な抗菌力を有している。また、感染モデル実験においても優れたin vivo効果が認められている。

安全性面においては、キノロン環の8位にメトキシ基を導入することにより、従来のキノロン薬の課題である光毒性がマウス、モルモットで認められなくなった。また、他の毒性試験でも、特に問題はないことが示唆されている。

第1相臨床試験では、単回経口投与は最高600mgまで、反復経口投与は300mg×2回/日5回用で検討が行われ、良好な組織移行性が示唆された。一方、安全性については特に問題は認められなかった。

平成4年1月より肺炎および慢性気道感染症を主な対象として前期第II相臨床試験を実施した。本薬剤の投与量別有効率は100mg×2回/日で、93.8％（61/65）、150mg×2回/日で、92.1％（35/38）、200mg×2回/日で94.2％（49/52）であり、他のフルオロキノロン系抗菌薬に同程度もしくはそれ以上の効果が得られた。また、副作用および臨床検査値異常発現率は4.2％（8/192）および10.3％（16/156）であり、特に問題となる副作用および臨床検査値異常は認められなかった。

非臨床試験、第1相臨床試験および前期第II相臨床試験の成績から、GFLXが呼吸器感染症に対して臨床的に有用であると考えられ、フルオロキノロン系抗菌薬の使用頻度が高いと考えられる急性気管支炎、慢性気道感染症および肺炎を対象として、後期第II相臨床試験を実施したので、その成績を報告する。

なお、本試験は各医療機関の倫理委員会の承認を得ると共に、平成2年10月1日より施行された「医薬品の臨床試験の実施に関する基準」を遵守して実施した。

Ⅰ．試験方法
1）対象疾患および対象症例
平成5年8月6日から平成6年3月29日に全国23施設を受診した急性気管支炎、肺炎および慢性気道感染症を対象疾患とした。

2）対象症例
年齢は下限を16歳、上限を原則として80歳未満とした。感染症として症状・所見[発熱、CRP上昇、肺炎陰影]が明確で、確実に経過観察が可能な患者とした。入院・外来は問わないこととして、下記のいずれかに該当する場合は除外することとした。

＜除外基準＞
(1) 同系抗菌薬に無効で、治験薬の効果が期待できない患者
(2) 他の抗菌薬療法により症状が改善しつつある患者
(3) 重篤な基礎疾患、合併症を有し治験薬の薬効の評価が困難な患者
(4) 他の抗菌薬併用療法を必要とする患者
(5) 高度な心、肝、腎機能障害のある患者
(6) てんかん等の症候群性疾患の合併症、またはこれらが既往のある患者
(7) キノロン系抗菌薬に対し、アレルギーあるいは重篤な副作用の既往のある患者
(8) 妊婦、妊娠している可能性のある患者または授乳中の患者
(9) その他、治験担当医師が不適当と判断した患者など、治験に先立ち治験の目的および方法、予期される効果および危険性等について患者に説明し、患者の自由意志により試験参加の同意を文書または口頭で得られた患者を対象とした。また、同意能力を欠く等により患
者本人の同意を得ることが困難な場合には、その法定代理人に代わって同意を成し得る者の同意を得ることとした。

2. 試験薬剤および投与方法
1) 試験薬剤
本薬剤は1錠中にGFLX無水物として100mgまたは150mgを含有するフィルムコート錠である。

2) 投与方法
本薬剤1錠100mg、150mg、あるいは200mgを1日1錠または2錠経口投与した。投与間隔は急性気管支炎では全7日間、慢性気道感染症および肺結核では4日間としたが、次に各項目に該当する場合は治験担当医師の判断で投与を中止してもよいこととした。

なお、投与を中止した場合はその時点で可能な限り所定の検査を実施し、その時期、理由を症例記録に記載することとした。

＜中止基準＞
（1）本薬剤投与開始後に症状が悪化し、継続投与が不適当と判断された場合
（2）重篤な副作用、臨床検査異常が出現した場合
（3）合併症の増悪または偶発症の発生（不慮の事故を含む）した場合
（4）治療方針の変更を必要とした場合
（5）上記以外の理由で試験実施計画書の遵守が不可能となった場合
（6）試験開始後に対象疾患および患者の選択基準に違反していることが判明した場合
（7）患者またはその法定代理人等による同意の撤回がなされた場合
（8）その他、治験担当医師の判断により中止が必要とされた場合

3. 併用薬剤・処置
本薬剤投与中、他の抗生物質、副腎皮質ステロイド薬、非ステロイド消炎鎮痛薬、γ-クロロブリン製剤、G-CSF製剤との併用は禁止であった。また、本薬剤の治療効果に影響を及ぼすと考えられる消炎鎮痛薬および解熱薬は原則として併用を行わないものとした。ただし、やむを得ず併用した場合は、その薬剤名、投与量、併用期間を記録することとした。なお、本薬剤の吸収に及ぼす影響が確認されていないカルシウム、マグネシウム、アルミニウムを含有する制酸薬、鉄剤、ヒスタミンH₂受容体拮抗薬およびテオフィリン代謝に及ぼす影響が確認されていなティオフェリン製剤は併用を避けることとした。

本薬剤の臨床効果に影響を及ぼすと考えられる処置はできることとした。ただし、やむを得ず行った場合は、その処置名、時期（期間）等について症例記録に記載することとした。

4. 調査項目および調査時期
1）患者背景・服薬状況・臨床症状
臨床症状・服薬状況については、投与開始時、投与3日後、7日後、および投与終了時に必ず調査することとした。

ただし、投与3日後の調査は慢性気道感染症では可能なかぎりとした。

（1）患者背景
治験開始前に、患者名（インチネル）、性別、カルテ番号、年齢、入院・外来、体重、感染症診断名、重症度、基礎疾患・合併症、その重症度、現病歴、本薬剤投与前後の化学療法、フルオロキノロン系抗生物質の服薬歴、アレルギー既往歴を調査することとした。

（2）服薬状況
間診により服薬の確認を行い、症例記録に記録することとした。

（3）臨床症状
調査項目及び記載方法は以下の通りとしたが、その他必要と思われる事項があれば適宜追加してもよいこととした。

<table>
<thead>
<tr>
<th>体温</th>
<th>実測値</th>
</tr>
</thead>
<tbody>
<tr>
<td>咳嗽</td>
<td>2+(著明), +（軽度）, -（薄い）</td>
</tr>
<tr>
<td>咳痰量</td>
<td>4+（≥100mL）, 3+（<100mL ≧50mL）, 2+（<50mL ≧10mL）, 1+（<10mL）, 0(0mL)</td>
</tr>
<tr>
<td>喘鳴</td>
<td>P（騒性）, PM（騒粘性）, M（粘性）</td>
</tr>
<tr>
<td>呼吸困難</td>
<td>2+(著明), +（軽度）, -（薄い）</td>
</tr>
<tr>
<td>胸痛</td>
<td>+（あり）, -（薄い）</td>
</tr>
<tr>
<td>胸部ラ音</td>
<td>2+(著明), +（軽度）, -（薄い）</td>
</tr>
<tr>
<td>脱水症状</td>
<td>+（あり）, -（薄い）</td>
</tr>
<tr>
<td>チアノーゼ</td>
<td>+（あり）, -（薄い）</td>
</tr>
<tr>
<td>胸部X線</td>
<td>模写する</td>
</tr>
</tbody>
</table>

2）細菌学的検査
細菌学的検査（細菌の分離、同定、菌数測定）は、原則として各医療機関において投与開始時、投与3日後、投与7日後および投与終了時に必ず実施することとした。

ただし、治療・改善により、咳痰が得られなくなった場合には、細菌学的検査は行わなくてもよいこととした。なお、可能なかぎり感染症および代謝症については集中測定施設である厚生省薬剤検査センター微生物研究室に送付し、菌種の同定を実施することとした。

本薬剤、tosufloxacin（TFLX）、ciprofloxacin（CPFX）、ofloxacin（OFLX）およびnorfloxacin（NFLX）に対する最小発育阻止濃度（minimum inhibitory
5. 主治医判定
以下の主治医判定に際しては、治療担当医師が同一施設内の複数の医師と協議し、判定することとした。

1) 有効性・安全性

(1) 臨床効果

臨床効果は、臨床症状、細菌学的検査成績、胸部X線、白血球数、CRP 等の臨床検査成績の正常化ないし改善の程度をもとに、「著効」、「有効」、「やや有効」、「無効」、「判定不能」の5段階で判定することとした。

なお、臨床効果判定は、Table 2の基準を参考にすることとした。

(2) 細菌学的効果

起炎菌の消長をもとに、「陰性化」(起炎菌が消失した場合、または投与終了時に、治療・改善により、喀痰が得られなくなり細菌学的検査が未実施であった場合)、「減少または一部消滅」(起炎菌の菌量が明確に減少した場合、または複数の起炎菌が認められ、一部が消失した場合)、「菌交代」(投与開始時の起炎菌が全て消失し、新たな起炎菌が出現した場合)、「不変」(起炎菌の菌量が減少を伴わない場合)、「判定不能」(起炎菌が不明な場合、

Table 1. Items and schedule of laboratory tests

<table>
<thead>
<tr>
<th>Item</th>
<th>Before</th>
<th>Day 3</th>
<th>Day 7</th>
<th>Day 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest X-ray (pneumonia)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Chest X-ray (except pneumonia)</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erythrocytes</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>hemoglobin</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>hematocrit</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>WBC</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>hemogram platelets</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>reticulocyte</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Mycoplasmal antibody (CF or IHA)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Chlamydial antibody</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cold hemagglutination</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Hepatic function test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-GOT</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>s-GPT</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Al-P</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>bilirubin (total, direct)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>LDH</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>γ-GTP</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>LAP</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Renal function test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUN</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>s-creatinine</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Urinalysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>protein</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>sugar</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>urobilinogen</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>sedimentation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>occult blood</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>electrolyte (Na, K, Cl)</td>
<td>●</td>
<td>○</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>blood sugar</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ESR (1-h value)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>CRP</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Bacteriological examination</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

●: indispensable ○: should be performed as often as possible
1 should be performed for acute bronchitis
2 should be performed for pneumonia
Table 2. Criteria for clinical response against targeted disease (reference purpose)

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Good</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pneumonia</td>
<td>Chronic respiratory tract infections</td>
<td>Acute respiratory tract infections</td>
</tr>
<tr>
<td>Body temperature</td>
<td>decreased to less than 37°C within 3 days</td>
<td>decreased to less than 37°C within 3 days</td>
<td>decreased to less than 37°C within 3 days</td>
</tr>
<tr>
<td>CRP</td>
<td>decreased to 1+ or less within 7 days</td>
<td>decreased to 1+ or less within 7 days (to the degree ± if it was 1+ at the start)</td>
<td>decreased to 1+ or less within 7 days</td>
</tr>
<tr>
<td>WBC</td>
<td>decreased to less than 8,000/mm³ within 3 days</td>
<td>decreased to less than 8,000/mm³ within 7 days</td>
<td>decreased to less than 8,000/mm³ within 3 days</td>
</tr>
<tr>
<td>Sputum volume</td>
<td>changed from P or PM to M, or disappeared within 3 days</td>
<td>changed from P or PM to M, or disappeared within 7 days</td>
<td>decreased to 1+ or less within 3 days</td>
</tr>
<tr>
<td>Sputum property</td>
<td>disappeared within 3 days</td>
<td>disappeared within 7 days</td>
<td>disappeared within 7 days</td>
</tr>
<tr>
<td>Causative organisms</td>
<td>disappeared, or decreased to 2 points or less within 14 days</td>
<td>disappeared within 7 days</td>
<td>disappeared within 3 days</td>
</tr>
<tr>
<td>X-ray shadowgram</td>
<td>disappeared, or decreased to 2 points or less within 14 days</td>
<td>disappeared within 7 days</td>
<td>disappeared within 3 days</td>
</tr>
</tbody>
</table>

- **Fair**: when some or all of the above symptoms and findings are improved but not to a clinically significant level.
- **Poor**: when the above symptoms and findings are not improved, or are aggravated.

また起炎菌の推移が明らかでない場合）の5段階で判定することとした。

(3) 随伴症状

随伴症状が発現した場合には、本薬剤との因果関係について、「明らかに関係あり」（例えば投薬中止により症状が消失し、再投薬により再出現した場合）、「多分関係あり」（50％以上の確率で関係ありと思われる場合）、「関係あるかもしれない」（関係ありの確率が50％未満と思われる場合）、「関係ないらしい」（関係を完全に否定できないが、その確率は非常に低いと思われる場合）、「関係なし」（関係を完全に否定できる場合）の5段階で判定することとした。

このうち、「明らかに関係あり」、「多分関係あり」および「関係あるかもしれない」と判定された随伴症状を副作用として取り扱うこととした。

(4) 臨床検査値異常

本薬剤投与開始後に悪化したと考えられる異常値（異常変動）の採択は、日本化学療法学会の判定基準に従うこととした。異常変動と判断した場合には、本薬剤との因果関係について、患者の基礎疾患、合併症等を勘案した上で、随伴症状の因果関係と同様に、「明らかに関係あり」、「多分関係あり」、「関係あるかもしれない」、「関係ないらしい」、「関係なし」の5段階で判定することとした。

このうち、「明らかに関係あり」、「多分関係あり」および「関係あるかもしれない」は判定された項目を臨床検査値異常として取り扱うこととした。
(5) 有用性
臨床効果、細菌学的効果、副作用、臨床検査値異常を総合的に勘案し、「極めて有用」、「有用」、「やや有用」、「有用でない」、「判定不能」の5段階で判定することとした。

ただし、臨床効果が「判定不能」でも副作用または臨床検査値異常発現症例では有用性を判定することとした。

2) 感染症重症度
感染症重症度は、投与開始前の臨床症状及び臨床検査成績をもとに、「軽症」、「中等症」、「重症」の3段階で判定することとした。

6. 不完全例の取り扱い、症例記録記載事項の妥当性の検討
治験終了後、治験総括医師は、症例記録記載事項の妥当性および試験実施計画書違反者（不完全例）等の取り扱いについて検討を行い、治験担当医師との協議の上、最終決定することとした。

7. 解析方法
解析は、治験総括医師の指導のもと、杏林製薬株式会社研究開発管理部において行うこととした。解析は臨床効果、細菌学的効果、副作用、臨床検査値異常、有用性などを行うこととし、その他、本薬剤の特徴を明らかにするため、副次的な項目についても解析を行うこととした。

8. 体内動態
文書で同意を得た患者に対し、血清および唾液を採取することとした。採取時期は原則として初回投与の2～4時間後としたが、治験担当医師の判断で適宜変更し、また可能な場合は適宜追加できることとした。GFLX の測定は HPLC 法で行うこととした。

II. 試験成績

1. 症例構成
解析対象症例の症例構成を Table 3 に、除外・脱落の理由を Table 4 に示す。総投与症例数は110例であった。臨床効果の解析対象症例は87例で不採用例は23例であった（除外・脱落率20.9％）。その内訳は重複投与1例、直前のセフェム系抗菌薬投与1例、対象外疾患2例、感染状況不明確2例、初回以降薬院せず1例、投与量不足（副作用にて中止）2例、および併用薬違反14例であった。不採用の解析対象症例は97例で不採用例は13例であった。その内訳は重複投与1例、初回以降薬院せず1例および併用薬違反（非ステロイド性消炎鎮痛薬併用）11例であった。なお、不採用とした13例のうち、重複投与1例と初

Table 3. Case distribution

<table>
<thead>
<tr>
<th>Total number of cases</th>
<th>Efficacy</th>
<th>Safety</th>
<th>Usefulness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>87</td>
<td>97</td>
<td>84</td>
</tr>
</tbody>
</table>

Table 4. Reason for exclusion from clinical evaluation

<table>
<thead>
<tr>
<th>Reason</th>
<th>Clinical efficacy</th>
<th>Side effects</th>
<th>Laboratory findings</th>
<th>Usefulness</th>
<th>No. of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re-administration</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>1</td>
</tr>
<tr>
<td>Case with pretreatment of antibiotics</td>
<td>×</td>
<td>○</td>
<td>○</td>
<td>×</td>
<td>1</td>
</tr>
<tr>
<td>Non-targeted disease</td>
<td>×</td>
<td>○</td>
<td>○</td>
<td>×</td>
<td>2</td>
</tr>
<tr>
<td>Without definite infectious signs</td>
<td>×</td>
<td>○</td>
<td>○</td>
<td>×</td>
<td>2</td>
</tr>
<tr>
<td>No visit after initial consultation</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>1</td>
</tr>
<tr>
<td>Insufficient dosing</td>
<td>discontinue caused by side effects and clinical laboratory test not tested</td>
<td>×</td>
<td>○</td>
<td>×</td>
<td>2</td>
</tr>
<tr>
<td>Violation of prohibition of concomitant drugs</td>
<td>NSAIDS</td>
<td>×</td>
<td>×</td>
<td>××</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>and abnormal laboratory finding</td>
<td>×</td>
<td>×</td>
<td>○</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>and insufficient clinical laboratory test items</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>except NSAIDS</td>
<td>×</td>
<td>○</td>
<td>○</td>
<td>3</td>
</tr>
<tr>
<td>Insufficient clinical laboratory tests</td>
<td>clinical laboratory test not tested</td>
<td>○</td>
<td>○</td>
<td>×</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>insufficient clinical laboratory test items</td>
<td>○</td>
<td>○</td>
<td>×</td>
<td>3</td>
</tr>
</tbody>
</table>

1 If side effects observed, the case would be evaluated.
2 If abnormal laboratory findings observed, the case would be evaluated.
回以降来院せず1例を除いて2例を除いた残り11例について、副作用が発現した場合には解析対象症例としていたが、本治験では副作用が発現しなかったため、解析対象症例以外とした。臨床検査値の解析対象症例は84例で、不採用例は26例であった。臨床検査が投与開始時は投与開始前1日から投与開始日までに、また、投与終了（中止）時は、投与終了（中止）日から4日後に実施され、かつ血液検査、肝機能検査および腎機能検査の各項目が1項目以上発現した症例を臨床検査値の解析対象症例としている。不採用例の内訳は重複投与1例、初回以上来院せず1例、投与量不足（副作用にて中止）2例、併用薬違反（非ステロイド性消炎痛薬併用）10例および臨床検査不十分（臨床検査未実施および検査項目不足）12例であった。なお、不採用とした26例のうち、重複投与1例、初回以降来院せず1例および臨床検査未実施11例を除いた13例を除いた残り13例について、臨床検査値異常が発現した場合には解析対象症例としていたが、本治験では臨床検査値異常が発現しなかったため、解析対象症例を除外した。有用性の解析対象症例は89例で不採用例は21例であった。有用性の解析対象症例は臨床効果解析対象症例でかつ副作用および臨床検査値がともに採用された症例とすることとした。ただし、臨床効果が不採用であった症例において、副作用または臨床検査値異常が発現した症例は有用性の解析対象症例とした。

2. 患者背景因子

1. 呼吸器感染症患者の解析対象症例における年齢・性別の症例数をTable 5に示す。

2. 年齢別：男性が44例（50.6%）、女性43例（49.4%）であった。年齢は60歳以上が44例（50.6%）と過半数を占めていた。投与量別では1日1回投与が83例（95.4%）で、大半を占めていた。（Table 6）。

3. 臨床効果

4. 疾患別臨床効果をTable 7に示す。「著効」と「有効」を合わせた有効率（以下有効率）は呼吸器感染症全体で92.0%（80/87）であった。主な疾患についてみると急性気管支炎で94.4%（17/18）、慢性気管支炎で86.4%（22/25）、気道粘膜症（気管支拡張症）で100%（12/12）、慢性呼吸器疾患の二次感染で100%（10/10）、肺炎で87.0%（20/23）であった。肺炎23例のうち2例のマイコプラズマ肺炎が含まれており、臨床効果は著効、有効、各1例ずつであった。なお、少数例ではあるが、びまん性汎細気管支炎2例についてはすべて有効以上であった。
2) 疾患別・投与量別臨床効果
急性気管支炎、肺炎、慢性気管支炎、気管支拡張症（感染時）、慢性呼吸器疾患の二次感染およびびまん性浮遊気管支炎における投与量別の臨床効果をTable 8に示す。これらの疾患全体での投与量別有効率は100mg×2回/日で、89.7％（26/29）、150mg×2回/日で、89.2％（33/37）、200mg×2回/日で100％（17/17）であった。なお、急性気管支炎における有効率は100mg×2回/日、150mg×2回/日、200mg×2回/日の投与ではそれぞれ90.9％（10/11）、100％（3/3）、100％（2/2）であった。肺炎における有効率はそれぞれ100％（4/4）、81.3％（13/16）、100％（2/2）であった。慢性気管支炎における有効率はそれぞれ75.0％（6/8）、88.9％（8/9）、100％（4/4）であった。気管支拡張症（感染時）における有効率はそれぞれ100％（1/1）、100％（7/7）、100％（4/4）であった。慢性呼吸器疾患の二次感染における有効率はそれぞれ100％（5/5）、100％（2/2）、100％（3/3）であった。びまん性浮遊気管支炎における有効率は200mg×2回/日で100％（2/2）であった。

3) 起炎菌別臨床効果
起炎菌別臨床効果をTable 9に示す。起炎菌が判明した39症例での有効率は94.9％（37/39）であった。単独菌感染37例の有効率は97.3％（36/37）で、グラム陽性菌とグラム陰性菌別別の有効率はそれぞれ100％（18/18）、94.7％（18/19）であった。複数菌感染の症例は2例であり、内1例が有効であった。

主要な起炎菌別臨床効果は Streptococcus pneumoniae（11/11）、Staphylococcus aureus（5/5）、Moraxella（Branhamella）catalhalis（5/5）、Pseudomonas aeruginosa（4/4）および Haemophilus influenzae（3/3）であり、いずれも100％の有効率であった。

4) 細菌学的効果
(1) 起炎菌別細菌学的効果
起炎菌別細菌学的効果をTable 10-1、10-2に示す。起炎菌の消長が明らかとなった34症例での菌陰性化率は91.2％（31/34）であった。単独菌感染の菌陰性化率は

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Daily dose</th>
<th>No. of cases</th>
<th>Clinical efficacy</th>
<th>Efficacy rate* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>excellent</td>
<td>good</td>
</tr>
<tr>
<td>Acute bronchitis</td>
<td>100mg×2</td>
<td>11</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>150mg×2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>200mg×1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>200mg×2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>18</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>100mg×2</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>150mg×2</td>
<td>16</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>200mg×1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>200mg×2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>23</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>Chronic bronchitis</td>
<td>100mg×2</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>150mg×2</td>
<td>9</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>200mg×1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>200mg×2</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>22</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Bronchiectasis with infection</td>
<td>100mg×2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>150mg×2</td>
<td>7</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>200mg×2</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>12</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Secondary infection with chronic respiratory disease</td>
<td>100mg×2</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>150mg×2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>200mg×2</td>
<td>3</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>10</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Diffuse panbronchiolitis</td>
<td>200mg×2</td>
<td>2</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>87</td>
<td>14</td>
<td>66</td>
</tr>
</tbody>
</table>

*(excellent+good)/No. of cases × 100
Table 9. Clinical efficacy classified by causative organisms

<table>
<thead>
<tr>
<th>Causative organisms</th>
<th>No. of cases</th>
<th>Clinical efficacy</th>
<th>Efficacy rate* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monomicrobial infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gram-positive bacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td>11</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>S. aureus</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>S. pyogenes</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Subtotal</td>
<td>18</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Gram-negative bacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. (B.) catarrhalis</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>H. influenzae</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>K. oxytoca</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. marcescens</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. parainfluenzae</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>19</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Polymicrobial infection</td>
<td>37</td>
<td>7</td>
<td>29</td>
</tr>
<tr>
<td>No. of cases</td>
<td></td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

*(excellent + good)/No. of cases × 100

93.9% (31/33) で、単独感染症におけるグラム陽性菌およびグラム陰性菌の菌陽性化率はそれぞれ100% (15/15)、88.9% (16/18) であった。一方、複数菌感染症は1症例で、グラム陰性桿菌とStreptococcus agalactiaeは消失したが、MRSAが存続した。なお、投與後出現菌は見られなかった。主要な起炎菌の菌消失率は、*S. pneumoniae* 100% (8/8)、*S. aureus* 100% (5/5)、*M. (B.) catarrhalis* 100% (4/4)、*P. aeruginosa* 75.0% (3/4)および*H. influenzae* 100% (3/3)であった。

(2) 起炎菌に対する抗菌効果

起炎菌に対するGFLX、tosufloxacin (TFLX)、ciprofloxacin (CPFX)、ofloxacin (OFLX)、norfloxacin (NFLX)の抗菌力をTable 11に示す。GFLXの抗菌力はTFLXおよび同等の抗菌力を示し、CPFX、OFLX、NFLXより強い抗菌力を示した。

4. 安全性

1) 副作用

副作用発現率とその内訳をTable 12-1、12-2に示す。各投与量別の副作用発現率は100mg×2回/日で3.2% (1/31)、150mg×2回/日で6.8% (3/44)、200mg×2回/日で5.6% (1/18)であり、全体の副作用発現率は6.2% (6/97)であった。内訳は、蕁麻疹、浮腫、眠気、食欲不振、心窓部不快感、嘔気、嘔気・嘔吐であり、その程度は軽度または中等度であり、重篤なものはみられなかった。

2) 臨床検査値異常

臨床検査値異常発現率とその内訳をTable 13-1、13-2に示す。各投与量別の臨床検査値異常発現率は100mg×2回/日で14.3% (4/28)、150mg×2回/日で5.7% (2/35)、200mg×2回/日で22.2% (4/18)であり、全体の臨床検査値異常発現率は11.9% (10/84)であった。内訳はGOT、GPT等の肝機能検査値の一過性の上昇が主なもので、その程度はすべて軽度であり、重篤なもののはみられなかった。

5. 有用性

有用性解析対象症例89例のうち、極めて有用と有用をあわせた症例は75例で、有用率は84.3% (75/89)であった (Table 14)。

6. 体内動態

慢性気管支炎の1例において、血清および唾液中のGFLX濃度を測定した (Table 15)。200mg×2回/日の反復投与による初回投与後の略歯中濃度は、8時間目で2.40 μg/mLで、同時に測定された血清中濃度は1.58 μg/mLであり、その対血清比は1.52であった。3日目の投与後2時間でそれぞれ3.74 μg/mL、2.34 μg/mL、1.60であり、5日目の投与後2時間においてもそれぞれ6.94 μg/mL、2.91 μg/mL、2.38であった。
Table 10-1. Bacteriological efficacy classified by causative organisms

<table>
<thead>
<tr>
<th>Causative organisms</th>
<th>Gram-positive bacteria</th>
<th>Gram-negative bacteria</th>
<th>Eradication rate* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pneumoniae</td>
<td>8</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>S. aureus</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>S. pyogenes</td>
<td>2</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Subtotal</td>
<td>15</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>M. (B.)catarrhalis</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>3</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>3</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>H. influenzae</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>E. coli</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>K. oxytoca</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>S. marcescens</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>H. parainfluenzae</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Subtotal</td>
<td>18</td>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td>31</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 10-2. Bacteriological eradication of causative organisms

<table>
<thead>
<tr>
<th>Causative organisms</th>
<th>Gram-positive bacteria</th>
<th>Gram-negative bacteria</th>
<th>Eradication rate* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pneumoniae</td>
<td>8</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>S. aureus</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>S. pyogenes</td>
<td>2</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>MRSA</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>S. agalactiae</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Subtotal</td>
<td>17</td>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>M. (B.)catarrhalis</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>4</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>3</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>H. influenzae</td>
<td>3</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>E. coli</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>K. oxytoca</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>S. marcescens</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>H. parainfluenzae</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>GNR</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Subtotal</td>
<td>19</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>36</td>
<td>33</td>
<td>100</td>
</tr>
</tbody>
</table>

* eradicated/No. of strains × 100

Table 11. Antimicrobial activity of GFLX and reference drugs

<table>
<thead>
<tr>
<th>Causative organisms</th>
<th>MIC (μg/mL): range</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pneumoniae</td>
<td>0.10 ~ 0.20, 0.05 ~ 0.20, 0.39 ~ 3.13, 0.78 ~ 3.13, 1.56 ~ 50</td>
</tr>
<tr>
<td>S. aureus</td>
<td>0.10, 0.05, 0.39, 0.20 ~ 0.39, 1.56</td>
</tr>
<tr>
<td>S. pyogenes</td>
<td>0.20, 0.10 ~ 0.20, 0.39, 0.78 ~ 1.56, 1.56 ~ 3.13</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>0.05 ~ 0.10, 0.025 ~ 0.025, 0.05, 0.10, 0.20</td>
</tr>
<tr>
<td>M. (B.)catarrhalis</td>
<td>0.05, 0.0125 ~ 0.025, 0.05, 0.10, 0.10</td>
</tr>
<tr>
<td>E. coli</td>
<td>0.05, 0.05, 0.05, 0.10, 0.10</td>
</tr>
<tr>
<td>K. oxytoca</td>
<td>0.025, 0.0125, 0.0125, 0.10, 0.05</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>6.25, 1.56, 1.56, 6.25, 6.25</td>
</tr>
</tbody>
</table>
Table 12-1. Side effects classified by daily dose

<table>
<thead>
<tr>
<th>Dosage</th>
<th>Cases</th>
<th>Rate(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 × 2</td>
<td>1/31</td>
<td>3.2</td>
</tr>
<tr>
<td>150 × 2</td>
<td>3/44</td>
<td>6.8</td>
</tr>
<tr>
<td>200 × 1</td>
<td>1/4</td>
<td>25.0</td>
</tr>
<tr>
<td>200 × 2</td>
<td>1/18</td>
<td>5.6</td>
</tr>
<tr>
<td>Total</td>
<td>6/97</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Table 12-2. Side effects

<table>
<thead>
<tr>
<th>No.</th>
<th>Type of reaction</th>
<th>Severity</th>
<th>Relation to drug</th>
<th>Onset (day)</th>
<th>Administration</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Dosage (mg × times)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Urticaria</td>
<td>Moderate</td>
<td>Probable</td>
<td>0</td>
<td>Withdrawn</td>
<td>Female</td>
<td>16</td>
<td>150 × 2</td>
</tr>
<tr>
<td>2</td>
<td>Oedema</td>
<td>Mild</td>
<td>Possible</td>
<td>5</td>
<td>Withdrawn</td>
<td>Male</td>
<td>84</td>
<td>150 × 2</td>
</tr>
<tr>
<td>3</td>
<td>Sleepiness</td>
<td>Mild</td>
<td>Probable</td>
<td>5</td>
<td>Withdrawn</td>
<td>Female</td>
<td>44</td>
<td>200 × 2</td>
</tr>
<tr>
<td>4</td>
<td>Nausea</td>
<td>Moderate</td>
<td>Probable</td>
<td>3</td>
<td>Withdrawn</td>
<td>Female</td>
<td>41</td>
<td>100 × 2</td>
</tr>
<tr>
<td>5</td>
<td>Nausea · Vomiting</td>
<td>Moderate</td>
<td>Probable</td>
<td>0</td>
<td>Withdrawn</td>
<td>Male</td>
<td>71</td>
<td>150 × 2</td>
</tr>
<tr>
<td>6</td>
<td>Anorexia · Discomfort Epigastric</td>
<td>Moderate</td>
<td>Probable</td>
<td>1</td>
<td>Withdrawn</td>
<td>Male</td>
<td>22</td>
<td>200 × 1</td>
</tr>
</tbody>
</table>

Table 13-1. Abnormal laboratory findings classified by daily dose

<table>
<thead>
<tr>
<th>Dosage (mg × times)</th>
<th>Cases</th>
<th>Rate(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 × 2</td>
<td>4/28</td>
<td>14.3</td>
</tr>
<tr>
<td>150 × 2</td>
<td>2/35</td>
<td>5.7</td>
</tr>
<tr>
<td>200 × 1</td>
<td>0/3</td>
<td>0</td>
</tr>
<tr>
<td>200 × 2</td>
<td>4/18</td>
<td>22.2</td>
</tr>
<tr>
<td>Total</td>
<td>10/84</td>
<td>11.9</td>
</tr>
</tbody>
</table>

Table 13-2. Abnormal laboratory findings

<table>
<thead>
<tr>
<th>No.</th>
<th>Items</th>
<th>Change in abnormal value</th>
<th>Relation to drug</th>
<th>Period of administration(day)</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Dosage (mg × times)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WBC †</td>
<td>5000 × 1700 × 4100 × 32000* × (4100)</td>
<td>Possible</td>
<td>10</td>
<td>Female</td>
<td>53</td>
<td>100 × 2</td>
</tr>
<tr>
<td>2</td>
<td>Eosinophil †</td>
<td>1 × 4 × 10*</td>
<td>Possible</td>
<td>7</td>
<td>Female</td>
<td>30</td>
<td>100 × 2</td>
</tr>
<tr>
<td>3</td>
<td>GOT †</td>
<td>15 × 17 × 49* × (13)</td>
<td>Probable</td>
<td>13</td>
<td>Female</td>
<td>54</td>
<td>200 × 2</td>
</tr>
<tr>
<td>4</td>
<td>GPT †</td>
<td>49 × 63* × (28)</td>
<td>Probable</td>
<td>5</td>
<td>Male</td>
<td>66</td>
<td>200 × 2</td>
</tr>
<tr>
<td>5</td>
<td>GPT †</td>
<td>23 × 34 × 73* × N.E.</td>
<td>Possible</td>
<td>12</td>
<td>Male</td>
<td>58</td>
<td>150 × 2</td>
</tr>
<tr>
<td>6</td>
<td>GPT †</td>
<td>27 × 65*</td>
<td>Possible</td>
<td>7</td>
<td>Male</td>
<td>31</td>
<td>100 × 2</td>
</tr>
<tr>
<td>7</td>
<td>GPT †</td>
<td>46 × 111*</td>
<td>Possible</td>
<td>5</td>
<td>Male</td>
<td>69</td>
<td>100 × 2</td>
</tr>
<tr>
<td>8</td>
<td>GPT †</td>
<td>34 × 55*</td>
<td>Possible</td>
<td>12</td>
<td>Male</td>
<td>48</td>
<td>200 × 2</td>
</tr>
<tr>
<td>9</td>
<td>GPT †</td>
<td>94 × 253* × 271*</td>
<td>Possible</td>
<td>7</td>
<td>Male</td>
<td>32</td>
<td>150 × 2</td>
</tr>
<tr>
<td>10</td>
<td>γ-GTP †</td>
<td>47 × 63* × (32)</td>
<td>Possible</td>
<td>7</td>
<td>Male</td>
<td>66</td>
<td>200 × 2</td>
</tr>
</tbody>
</table>

* Abnormal value () Following investigation

Table 14. Usefulness

<table>
<thead>
<tr>
<th>No. of cases</th>
<th>Usefulness</th>
<th>Usefulness rate* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>remarkably useful</td>
<td>useful</td>
</tr>
<tr>
<td>89</td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

* (remarkably useful + useful) / No. of cases × 100
Table 15. Serum and sputum concentrations of GFLX
GFLX was administered 200mg×2/day for 7 days (Chronic bronchitis)

<table>
<thead>
<tr>
<th>Time after administration (hr)</th>
<th>Concentration of GFLX (μg/mL)</th>
<th>serum</th>
<th>sputum</th>
<th>sputum/serum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1 (treatment began)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>before</td>
<td></td>
<td>0.32</td>
<td>0.46</td>
<td>1.44</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.09</td>
<td>0.53</td>
<td>0.49</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1.44</td>
<td>2.36</td>
<td>1.64</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1.58</td>
<td>2.40</td>
<td>1.52</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>2.44</td>
<td></td>
<td>1.60</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2.34</td>
<td>3.74</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>5.44</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>4.15</td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>2.77</td>
<td></td>
<td>2.38</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2.91</td>
<td>6.94</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>2.83</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>5.14</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>5.90</td>
<td></td>
</tr>
</tbody>
</table>

III. 考察

GFLX は、杏林製薬株式会社で開発された新型フルオロキノロン系抗菌薬である。

本薬剤は幅広い抗菌スペクトラムを有し、in vitro の抗菌力を有し、GFLX はクロム内毒素性菌の他、グラム陰性菌、嫌気性菌、グラム陽性菌およびマイコプラズマ系の細菌に対して抗菌力を有する傾向が確認されている。

今回我々は、呼吸器感染症患者の血清 seeker に対する GFLX の有効性、安全性、および有用性について、呼吸器感染症患者を患者として検討した。GFLX の有効性は、92.0％（80/87）であり、他のフルオロキノロン系抗菌薬 [CPFX, TFLX, sparfloxacin（SPFX）、levofloxacian（LVFX）、OFLX] の有効率 90％以上の良好な成績であり、また主要な起炎菌である S. pneumoniae、S. aureus、M.（B.）catarrhalis および H. influenzae の全てが消失している。特に、本症例における症例は、GFLX の MIC 値で 0.1 μg/mL 以下であり、治療前が 0.5 μg/mL 以下の場合と比較すると、GFLX の MIC 値が低く、その後の血清中濃度を基にした GFLX の MIC 値は、0.1 μg/mL 以下の成績が得られた。

投与量別についてみると、100mg×2 回/日、150mg×2 回/日、200mg×2 回/日と投与量での有効率はそれぞれ 89.7％（26/29）、89.2％（33/37）および 100％（17/17）であり、十分満足できる臨床効果が得られた。これらの成績は GFLX の基礎試験の結果を反映したものと思われる。

GFLX の体内動態についてみると、200mg×2 回/日の 7 日間の授与時における GFLX の MIC 値は、GFLX 組と 0.5 μg/mL 以下であり、投与量 2 回/日において、飛行機内濃度は 2.91 μg/mL であり、対象は 2.38 μg/mL であった。

起炎菌別例の臨床効果および細菌学的効果は、ともに 90％以上の良好な成績であり、また主要な起炎菌である S. pneumoniae、S. aureus、M.（B.）catarrhalis および H. influenzae の全てが消失している。特に、本症例における症例は、GFLX の MIC 値で 0.1 μg/mL 以下であり、治療前が 0.5 μg/mL 以下の場合と比較すると、GFLX の MIC 値が低く、その後の血清中濃度を基にした GFLX の MIC 値は、0.1 μg/mL 以下の成績が得られた。

副作用は、頭痛、プール、嘔吐、食欲不振、睡眠障害など、著しい副作用は見られなかった。
文献
6) 青木 興治, 宮崎修一, 辻 明良, 他: 新キノロン系抗菌薬 gatifloxacin の in vitro 及び in vivo 抗菌作用. 日化療会誌 47 (S-2): 69-80, 1999
13) 第43回日本化学療法学会総会, 新薬シンポジウム AM-1155 (付記) 非臨床試験に関する項目. p.75-77, 東京, 1995
18) 草嶋 久生, 草川 元, 石田 了, 他: 新キノロン系抗菌薬 gatifloxacin の高速液体クロマトグラフィーによる体液内濃度測定法. 日化療会誌 47 (S-2): 104-111, 1999
19) 熊澤 洋一, 真下啓明: 第32回日本化学療法学会西日本支部総会, 新薬シンポジウム BAY o 9867 (Ciprofloxacin). 岡山, 1984
21) 上野 一恵, 河田 達史, 原 薫平: 第38回日本化学療法学会西日本支部総会, 新薬シンポジウム (2) Sparfloxacin (AT-4140). 岡山, 1990
23) 岸 洋一, 勝 正孝, 斎藤 篤: 第30回日本化学療法学会西日本支部総会, 新薬シンポジウム DL-8280. 名古屋, 1992
LATE-PHASE-II CLINICAL STUDY OF GATIFLOXACIN,
AN ORAL NEW QUINOLONE,
IN RESPIRATORY TRACT INFECTIONS

1 Department of General Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1, Kashiwashita, Kashiwa, Chiba 277-8567, Japan
2 Department of Respiratory Disease, Sapporo Hospital of Hokkaido Railway Company
3 Second Department of Internal Medicine, Niigata University School of Medicine and Affiliated Hospital
4 Department of Internal Medicine, Suibarago Hospital
5 Department of Internal Medicine, Kasumigaura National Hospital
6 Department of Internal Medicine, Cancer Institute Hospital
7 Department of Respiratory Disease, Tokyo National Hospital
8 Department of Respiratory Disease, Kanagawa Prefectural Circulatory and Respiratory Diseases Center
9 The Second Department of Internal Medicine, School of Medicine, Hamamatsu University and Affiliated Hospital
10 The First Department of Internal Medicine, School of Medicine, Nagoya University and Affiliated Hospital
11 Second Department of Internal Medicine, Nara Medical University
12 Department of Internal Medicine, National Himeji Hospital
13 Division of Respiratory Disease, Department of Medicine, Kawasaki Medical School
14 The First Department of Internal Medicine, School of Medicine, Kurume University
15 Department of Internal Medicine, Institute of Tropical Medicine, Nagasaki University and Affiliated Hospital
16 Second Department of Internal Medicine, Oita Medical University
17 First Department of Internal Medicine, Faculty of Medicine, University of the Ryukyus

We investigated the clinical and bacteriological efficacy, safety, usefulness, and fluid concentrations of gatifloxacin (GFLX) in respiratory tract infections. GFLX was administered in once-daily or twice-daily doses of 100, 150, or 200 mg for up to 7 days in cases of acute bronchitis and for up to 14 days in cases of chronic respiratory infection and pneumonia.

The results were as follows:
1. Clinical efficacy was evaluated in 87 cases, of whom 83 received twice-daily and 4 once-daily doses. The overall clinical efficacy rate (excellent or good) was 92.0% (80/87).
2. Bacteriological efficacy was evaluated in 34 cases of identified bacteria. The eradication rate was 91.2% (31/34).
3. Side effects were evaluated in 97 cases, and their incidence was 6.2% (6/97). Laboratory test findings were evaluated in 84 cases, and the incidence of abnormal findings was 11.9% (10/84).
4. Clinical usefulness was evaluated in 89 cases. The usefulness rate (very useful or useful) was 84.3% (75/89).

5. Serum and sputum concentrations of GFLX were measured in one case of chronic respiratory-tract infection after the 5th and 9th doses of 200 mg twice daily. The sputum to serum concentration ratios were 1.60 and 2.38, respectively. These results indicate good clinical and bacteriological efficacy for GFLX and suggest a satisfactory penetration into sputum. Therefore, it was concluded that GFLX, 100 to 200 mg twice daily, is a useful and satisfactory antimicrobial drug for the treatment of respiratory tract infections.